Studienverlaufsplan
Wahlpflichtmodule 1. Semester
Wahlpflichtmodule 2. Semester
Wahlpflichtmodule 3. Semester
Wahlpflichtmodule 4. Semester
- WP
- 3SWS
- 3ECTS
- WP
- 3SWS
- 3ECTS
- WP
- 3SWS
- 3ECTS
- WP
- 3SWS
- 3ECTS
- WP
- 3SWS
- 3ECTS
- WP
- 3SWS
- 3ECTS
- WP
- 3SWS
- 3ECTS
- WP
- 3SWS
- 3ECTS
- WP
- 3SWS
- 3ECTS
- WP
- 3SWS
- 3ECTS
- WP
- 3SWS
- 3ECTS
- WP
- 3SWS
- 3ECTS
- WP
- 3SWS
- 3ECTS
- WP
- 3SWS
- 3ECTS
- WP
- 3SWS
- 3ECTS
- WP
- 3SWS
- 3ECTS
- WP
- 3SWS
- 3ECTS
- WP
- 3SWS
- 3ECTS
Wahlpflichtmodule 5. Semester
Automatisierung ereignisdiskreter Systeme
Datenanalyse mit Python
Elektronische Steuergeräte
Embedded Systems
Energiewelt Heute und in der Zukunft
Gebäudesimulation
Grundlagen der Finite Elemente Methode
Infrastruktursysteme der Energieversorgung
Innovative Isoliersysteme
Kraftwerksanlagen
Light Technology
Modellbasierte Methoden der Fehlerdiagnose
Nachhaltigkeit
Netzstrategien und innovative Netzbetriebsmittel
Numerische Mathematik
Schaltnetzteile
Special electrical machines and drives
Technisches Englisch
Wahlpflichtmodule 6. Semester
Modulübersicht
1. Studiensemester
Digitale Informationsverarbeitung 1- PF
- 3 SWS
- 4 ECTS
- PF
- 3 SWS
- 4 ECTS
Nummer
321300
Sprache(n)
de
Dauer (Semester)
1
Kontaktzeit
45h
Selbststudium
75h
Lernergebnisse (learning outcomes)/Kompetenzen
Die Studierenden haben einen Überblick über die mathematischen und technischen Grundlagen der Digitaltechnik sowie über die elementaren Datentypen und Operationen, welche die Grundlage des Programmierens bilden. Sie sind in der Lage, Digitalschaltungen für typische Eingebettete Systeme in ihrer Wirkungsweise zu verstehen.
Die Studierenden kennen die grundsätzlichen Begriffe, Zusammenhänge und Wirkprinzipien. Von diesen Grundkenntnissen ausgehend sind sie in der Lage, sich in tiefere Einzelheiten, in den jeweils aktuellen Stand der Technik und in die Anforderungen der Praxis einzuarbeiten.
Inhalte
- Abgrenzung analog versus digital
- Schaltalgebra
- Normalformen
- Schaltungsminimierung und Minimalformen
- Binärzahlen und ihre Operationen
- Beschreibungsformen digitaler Schaltungen (Schaltfunktionen, Wahrheits- und Übergangstabellen, Schaltpläne, Impulsdiagramme)
- Kombinatorische Schaltungen (Schaltnetze), z. B. Multiplexer, Codierer, Vergleicher, Addierer
- Sequentielle Schaltungen (Schaltwerke), z. B. Flip-Flops, Register, Automaten
- Überblick Implementierungsmöglichkeiten (diskrete Logik, ASIC, FPGA, Mikrocontroller)
Lehrformen
Teilnahmevoraussetzungen
Prüfungsformen
Voraussetzungen für die Vergabe von Kreditpunkten
Verwendbarkeit des Moduls (in anderen Studiengängen)
Stellenwert der Note für die Endnote
Literatur
Fricke, K.: Digitaltechnik, Springer, 2018
Gehrke, W.; Winzker, M.; Urbanski, K.; Woitowitz, R.: Digitaltechnik, Springer, 2016
Lipp, H. M.; Becker, J.: Grundlagen der Digitaltechnik, De Gruyter, 2011
Schulz, P.; Naroska, E.: Digitale Systeme mit FPGAs entwickeln, Elektor, 2016
Elektrotechnik 1- PF
- 6 SWS
- 8 ECTS
- PF
- 6 SWS
- 8 ECTS
Nummer
321400
Sprache(n)
de
Dauer (Semester)
1
Kontaktzeit
90h
Selbststudium
150h
Lernergebnisse (learning outcomes)/Kompetenzen
Die Studierenden erlangen ein grundlegendes Verständnis der elektrotechnischen Grundgrößen und für das Zusammenwirken der Größen in Gleichstromnetzwerken und linearen quasistationären Wechselstrom-Netzwerken sowie ihrer Beschreibung durch komplexe Größen.
Inhalte
In der Gleichstromtechnik werden Widerstände und Quellen als Bauelemente eingeführt und einfache Grundschaltungen betrachtet. Hierbei wird auch auf technische Realisierungen eingegangen und es werden praktische Beispiele betrachtet. Schließlich führt die Verallgemeinerung des Ohmschen Gesetzes und der Kirchhoffschen Regeln zur Maschenstrom- und Knotenpotentialanalyse von Netzwerken.
- Physikalische Grundlagen: Elektrische Ladungen,elektrische Spannung, elektrischer Strom
- Energieübertragung in linearen Netzwerken
- Ohmsches Gesetz
- Elektrische Quellen: Eingeprägte Spannungsquelle, Eingeprägte Stromquelle, Lineare Quelle mit Innenwiderstand
- Verzweigter Stromkreis: Zweipol als Schaltelement, Zweipolnetze und die Kirchhoffschen Gesetze, Reihenschaltung von Zweipolen, Parallelschaltung von Zweipolen
- Netztransfigurationen, Ersatz-Quellen
- Netzwerkanalyse: Knotenpunkt-Potential-Analyse, Maschenstrom-Analyse
In der Wechselstromtechnik werden die aus der Gleichstromtechnik bekannten Analyse-Methoden auf Wechselstromnetze ausgedehnt.
- Harmonische Wechselgröße als Zeitdiagramm und in komplexer Darstellung
- Grundzweipole R, C, L
- Ohmsches Gesetz und Kirchhoffsche Gesetze im Komplexen
- Zeigerdiagramm
- Knotenpunkt-Potential-Analyse und Maschenstrom-Analyse im Komplexen
- Leistung und Energie an Grundzweipolen
- Zweipol mit Phasenverschiebung, Leistung und Energie, Komplexe Leistung
- Frequenzabhängigkeiten bei RL/RC-Zweipolen, Ortskurven, Frequenzgang
- Schwingkreis und Resonanz: Reihenresonanz, Parallelresonanz, Ortskurven, Bodediagramm
Lehrformen
Teilnahmevoraussetzungen
Prüfungsformen
Voraussetzungen für die Vergabe von Kreditpunkten
Verwendbarkeit des Moduls (in anderen Studiengängen)
Stellenwert der Note für die Endnote
Literatur
Lindner, Brauer Lehmann: Taschenbuch der Elektrotechnik und Elektronik, Fachbuchverlag Leipzig 2001
Frohne, Löcherer, Müller: Moeller Grundlagen der Elektrotechnik, B.G. Teubner Stuttgart, Leipzig, Wiesbaden 2002
Ingenieurmethodik- PF
- 4 SWS
- 6 ECTS
- PF
- 4 SWS
- 6 ECTS
Nummer
321500
Sprache(n)
de
Dauer (Semester)
1
Kontaktzeit
60h
Selbststudium
120h
Lernergebnisse (learning outcomes)/Kompetenzen
Die Studierenden erwerben das Verständnis für die Entstehung, Struktur und Anwendung von Normensystemen und können die wichtigsten Normen der Elektrosicherheit in der Praxis bei betrieblichen Abläufen umsetzen. Sie kennen die Pflichten, Aufgaben und Verantwortung einer Elektrofachkraft.
Wissenschaftliches Arbeiten:
Die Studierenden können wissenschaftlich Arbeiten und Denken. Sie verstehen die Grundlagen wissenschafltichen Arbeitens durch Empirie und Experimente.
Sie kennen die formale Struktur einer wissenschaftlichen Veröffentlichung, insbesondere technischer Berichte, können korrekt zitieren und haben ein Problembewusstsein bei Plagiaten.
Sie besitzen Kenntnisse in grundlegenden mathematischen Anwendungen der Messfehleranalyse und Statistik.
Inhalte
- Gefahren des elektrischen Stromes
- Begriffe und Organisation der Elektrosicherheit (inklusive Aufgaben, Pflichten und Sicherheit der Elektrofachkraft)
- Grundsätze und Schutzmaßnahmen der Elektrotechnik
- Die relevanten Normen der Elektrosicherheit
- Struktur des Normenwesens, international, europäisch, national
- Gesetze, Verordnungen und Unfallverhütungsvorschriften
- Ausgewählte sicherheitstechnische Praxislösungen
Wissenschaftliches Arbeiten:
- Erstellen eines Wissenschaftlichen Berichtes
- Gliederung: Kurzfassung, Einleitung, Darstellung der Arbeit, Zusammenfassung, Anhang
- Layout: Text, Grafiken, Formeln, Zitate
- Wissenschaftlich korrekte Zitiermethoden
- Wissenschaftliches Fehlverhalten (Plagiate)
- Messfehler, Standardabweichung, Varianz, Lineare Ausgleichsrechnung
- Gauß‘sche Fehlerfortpflanzung, Größtfehler
- Anwendung von Tabellenkalkulationsprogrammen, sowie Programmen zur Textverarbeitung
Lehrformen
Das Fachwissen wird in der Vorlesung präsentiert und erläutert. In den Übungen werden die vermittelten Methodenkenntnisse in der praktischen Anwendung dargestellt. Anhand von Beispielen wird das theoretische Wissen vertieft. Das Vorlesungsskript und die Übungen sowie die Laborordnung werden zum Download im Online-Lernportal zur Verfügung gestellt.
Wissenschaftliches Arbeiten:
Die Vorlesung vermittelt die theoretischen Inhalte. Anhand typischer Aufgabenstellungen werden entsprechende praktische Problemstellungen in den zugehörigen Übungen zeitnah behandelt.
Teilnahmevoraussetzungen
Prüfungsformen
Voraussetzungen für die Vergabe von Kreditpunkten
Verwendbarkeit des Moduls (in anderen Studiengängen)
Stellenwert der Note für die Endnote
Literatur
BGV Unfallverhütungsvorschriften
Vorschriften der Europäischen Gemeinschaft
VDE-Schriftreihe Normen Verständlich; „Betrieb von elektrischen Anlagen“; Verfasser: Komitee 224
Hohe, G.; Matz, F.: VDE-Schriftreihe Normen Verständlich; „Elektrische Sicherheit“
Vorlesungsskript Normen und Sicherheitstechnik
Vorlesungskript „Wissenschaftliches Arbeiten“
Prof. Striewe & A. Wiedegärtner, „Leitfaden für Erstellung wissenschaftlicher Arbeiten am ITB“, FH Münster
N. Franck, J. Stary, „Die Technik wissenschaftlichen Arbeitens“, Ferdinand Schöningh Verlag
M. Kornmeier, „Wissenschaftlich schreiben leicht gemacht – für Bachelor, Master und Dissertation“, UTB Verlag
K. Eden, M. Gebhard, „Dokumentation in der Mess- und Prüftechnik“, Springer Verlag
H & L. Hering, „Technische Berichte“, Springer Vieweg Verlag
Mathematik 1- PF
- 6 SWS
- 7 ECTS
- PF
- 6 SWS
- 7 ECTS
Nummer
321100
Sprache(n)
de
Dauer (Semester)
1
Kontaktzeit
90h
Selbststudium
120h
Lernergebnisse (learning outcomes)/Kompetenzen
• mathematische Techniken anwenden
• die mathematische Formelsprache gebrauchen
• wesentliche Eigenschaften von reellen Funktionen benennen und ihre Relevanz zur Darstellung von Zuständen oder Vorgängen in der Natur oder in technischen Systemen erkennen
• Grenzwerte von Folgen und Funktionen berechnen und Funktionen auf Stetigkeit untersuchen
• die Techniken der Differentialrechnung für Funktionen einer Veränderlichen anwenden, Kurvendiskussionen und Approximationen von Funktionen mit Taylorpolynomen durchführen
• die Grundrechenarten und Darstellungsarten komplexer Zahlen auf Probleme der Elektrotechnik anwenden
• die Grundbegriffe und Methoden der linearen Algebra, insbesondere Verfahren zur Lösung von linearen Gleichungssystemen anwenden.
Inhalte
Reelle Funktionen einer Veränderlichen: Funktionsbegriff einschließlich Umkehrfunktion, rationale, Wurzel-, Exponential-, trigonometrische und hyperbolische Funktionen,
Symmetrie, Monotonie, Asymptoten, Stetigkeit, Folgen, Grenzwertbegriff, Rechenregeln
Differenzialrechnung: Ableitung, Ableitung der mathematischen Grundfunktionen, Ableitungsregeln, Mittelwertsatz, Extremalstellen, Regel von de L'Hospital, Kurvendiskussion, Taylorentwicklung,
Darstellung von Funktionen durch Taylorreihen, Fehler- und Näherungsrechnung für Taylorentwicklungen
Komplexe Zahlen: Grundrechenarten, Darstellungsformen - kartesische- und Polardarstellung, komplexe Wurzeln
Vektorrechnung: Vektoren im R^n, grundlegende Definitionen, Rechenregeln und Rechenoperationen, Skalarprodukt, Orthogonalität, Projektion, Kreuzprodukt, Spatprodukt
Determinanten zweiter, dritter und allgemeiner Ordnung, Laplacescher Entwicklungssatz, Rechenregeln für Determinanten
Matrizen: Grundbegriffe und Definitionen, Rechenoperationen, Inverse Matrix,
Lineare Gleichungssysteme: Gaußalgorithmus, Beschreibung durch Matrizen, Lösen von Matrixgleichungen
Anwendungsbeispiele für Matrizen und lineare Gleichungssysteme
Lehrformen
In den Übungen beschäftigen sich die Studierenden selbstständig mit der Lösung von Aufgaben und setzen sich dadurch mit den Begriffen, Aussagen und Methoden aus der Vorlesung auseinander.
Teilnahmevoraussetzungen
Prüfungsformen
Voraussetzungen für die Vergabe von Kreditpunkten
Verwendbarkeit des Moduls (in anderen Studiengängen)
Stellenwert der Note für die Endnote
Literatur
Fetzer, Fränkel: Mathematik 1 (2008), Mathematik 2 (1999), Springer-Verlag
Knorrenschild, Michael: Mathematik für Ingenieure 1, Hanser-Verlag, 2009
Papula, Lothar: Mathematik für Ingenieure 1 (2009), 2 (2007), 3 (2008), Vieweg+Teubner
Papula, Lothar: Mathematische Formelsammlung(2006), Vieweg+Teubner
Preuß, Wenisch: Mathematik 1-3, Hanser-Verlag, 2003
Stingl, Peter: Mathematik für Fachhochschulen, Carl-Hanser Verlag 2003
Physik 1- PF
- 4 SWS
- 5 ECTS
- PF
- 4 SWS
- 5 ECTS
Nummer
321200
Sprache(n)
de
Dauer (Semester)
1
Kontaktzeit
60h
Selbststudium
90h
Lernergebnisse (learning outcomes)/Kompetenzen
- physikalische Gesetze auf Fragestellungen aus der Ingenieurspraxis anzuwenden
- Probleme zu abstrahieren
- Relevante Informationen aus Aufgabestellungen herauszufiltern und die Aufgaben mit Hilfe der erlernten physikalischen Grundlagen zu berechnen
- verbal formulierte Probleme zu formalisieren und die relevanten naturwissenschaftlich physikalischen Hintergründe zu erkennen und zu begründen
- die Grenzen zu benennen, in dessen Rahmen die erlernten physikalischen Grundlagen gelten und Fehlerabschätzungen durchzuführen
- selbstständig neue Inhalte auf Basis des bearbeiteten Stoffes zu erarbeiten
- lösungsorientiert und kritikfähig mit Problemen umzugehen
Inhalte
- Kinematik
- Newton'sche Axiome
- Kräfte
- Bezugssysteme und Scheinkräfte
- Zentralkörperprobleme
- Dynamik des Massenpunktes und Systemen von Massenpunkten
- Dynamik starrer Körper
- Mechanik deformierbarer Körper
- Fluidstatik
- Fluiddynamik
Thermodynamik :
- Prozess- und Zustandsgrößen
- Thermische Ausdehnung, Gasgesetze
- Wärme als Energieträger, Hauptsätze der Thermodynamik
- thermodynamische Maschinen, Kreisprozesse
- Phasenumwandlungen
- Wärmetransport
Lehrformen
Teilnahmevoraussetzungen
Inhaltlich: Grundlegende Mathematikkenntnisse, Differenzial- und Integralrechnung, Vektorrechnung
Prüfungsformen
Voraussetzungen für die Vergabe von Kreditpunkten
Verwendbarkeit des Moduls (in anderen Studiengängen)
Stellenwert der Note für die Endnote
Literatur
Tipler, Physik, Spektrum Verlag
2. Studiensemester
Digitale Informationsverarbeitung 2- PF
- 4 SWS
- 6 ECTS
- PF
- 4 SWS
- 6 ECTS
Nummer
322300
Sprache(n)
de
Dauer (Semester)
1
Kontaktzeit
60h
Selbststudium
120h
Lernergebnisse (learning outcomes)/Kompetenzen
• Sie benennen C++ Datentypen und Strukturen und nutzen sie in eigenen Programmbeispielen.
• Sie analysieren Aufgabenstellungen und erstellen eigenständig Hauptprogramme zu deren Lösung.
• Sie verstehen die Grundstrukturen der Objektorientierung und erzeugen eigene Beispiele für Klassen.
• Sie programmieren grundlegende Methoden von Klassen und erklären ihre Bedeutung.
Praktikum:
Es werden grundlegende Kenntnisse der Programmierung in C++ vertieft. Hierzu gehört die Fähigkeit, die Lösung einer konkreten Aufgabenstellungen zunächst in eine algorithmische Form zu bringen, diese zu kodieren und Strategien zur Fehlerbeseitigung zu finden, sowie das fertige Produkt genau zu dokumentieren. Es wird besonderer Wert auf eine saubere, strukturierte Programmierung gelegt. Die Verwendung objektorientierter Darstellungsformen wird, wo es sich anbietet, bevorzugt.
Inhalte
• Unterschiede zwischen funktionsorientierter und objektorientierter Programmierung
• Elementare Datentypen, Konstanten und Variablen
• Verwenden von Funktionen und Klassen
• Ein- und Ausgaben mit Streams
• Operatoren für elementare Datentypen
• Kontrollstrukturen
• Symbolische Konstanten und Makros
• Umwandlung arithmetischer Datentypen
• Die Standardklasse string
• Funktionen
• Speicherklassen und Namensbereiche
• Referenzen und Zeiger
• Definition von Klassen
• Methoden
• Vektoren
• Zeiger und Vektoren
Praktikum:
Die Studierenden wenden ihre Kenntnisse über folgende Aspekte der Programmierung praktiksch an:
• Verwendung aller Kontrollstrukturen
• Verwendung von Arrays und Structs
• Verwendung von Pointern
• Verwendung von Funktionen
• objektorientierte Programmierung: Klassen und Methoden
Lehrformen
Praktikum:
Praktische Übungen, die durch jede/n Studierende/n einzeln am Rechner durchgeführt werden. Die Studierenden müssen Problemstellungen in Quellcode umsetzen und einen schriftlichen Bericht dazu verfassen.
Teilnahmevoraussetzungen
Prüfungsformen
Praktikum: Unbenoteter Teilnahmenachweis
Voraussetzungen für die Vergabe von Kreditpunkten
Praktikum: Unbenoteter Teilnahmenachweis muss erbracht sein
Verwendbarkeit des Moduls (in anderen Studiengängen)
Stellenwert der Note für die Endnote
Literatur
Ulla Kirch, Peter Prinz, C++ Lernen und professionell anwenden, mitp, ISBN: 978-3-8266-9143-0, 5. Auflage (2010)
Ulla Kirch, Peter Prinz, C++ Das Übungsbuch, mitp, ISBN: 9783826694554, 4. Auflage (2013)
Stanley B. Lippman C++ Primer, Addison Wesley (1993)
Elektrotechnik 2- PF
- 6 SWS
- 6 ECTS
- PF
- 6 SWS
- 6 ECTS
Nummer
322400
Sprache(n)
de
Dauer (Semester)
1
Kontaktzeit
90h
Selbststudium
90h
Lernergebnisse (learning outcomes)/Kompetenzen
Die Studierenden sind mit den Prinzipien und Methoden des elektrischen Messens vertraut. Sie kennen die Eigenschaften elektrischer Messgeräte und können die Abweichungen und Unsicherheiten von Messergebnissen bewerten. Sie können für verschiedene Messaufgaben geeignete Geräte auswählen. Die grundlegenden Unterschiede des digitalen und analogen Messens sind ihnen geläufig.
Die Studierenden kennen die elementaren Größen und Zusammenhänge der elektrischen und magnetischen Felder und können diese wiedergeben. Auf dieser Grundlage sind sie in der Lage die Feldverteilungen und Wirkungen grundlegender feldgebender Anordnungen für zeitlich konstante und zeitlich veränderliche Größen zu berechnen und überschlägig abzuschätzen. Die Studierenden können die grundlegenden Feldkenntnisse auf typische Anordnungen und Betriebsmittel der Elektrotechnik (u. a. Isolator, Kondensator, Transformator, Leitung) übertragen und auf grundlegende Problem- und Aufgabenstellungen dieser Betriebsmittel anwenden.
Inhalte
- Normen, Begriffe, Einheiten und Normale
- Messabweichung und Messunsicherheit, vollständiges Messergebnis
- Messsignale und deren Charakterisierung (analog, digital, Gleichricht-, Effektiv- und Mittelwerte)
- Messung elektrischer Größen (Strom, Spannung, Widerstand, Leistung und Energie)
- Zeit- und Frequenzmessung
- Oszilloskope
Bereich „Felder“:
Das elektrostatische Feld:
- Grundbegriffe, Elektrische Ladung, Flächenladungsdichte, Verschiebungsflussdichte, Potential, Feldstärke, Energiedichte, Kräfte
- homogenes Feld im Plattenkondensator, inhomogene Feldverteilung bei Punktladungen, konzentrische Kugeln, koaxiale Zylinder, parallele runde Leiter
Das magnetische Feld
- Durchflutung, magnetische Feldstärke, Flussdichte , Fluss, magnetische Spannung, Permeabilität, Energiedichte
- Induktion, Generatorprinzip, Transformatorprinzip
- langer Leiter, Doppelleitung, koaxiale Leitung, Spule als Toroid, Übertrager, Transformator
Darstellung von elektrischen und magnetischen Feldproblemen durch Ersatzschaltbilder
Lehrformen
Auf den Bezug zu praktischen Anwendungen wird hingewiesen.
Teilnahmevoraussetzungen
Inhaltlich: Elektrotechnik 1
Prüfungsformen
Voraussetzungen für die Vergabe von Kreditpunkten
Verwendbarkeit des Moduls (in anderen Studiengängen)
Stellenwert der Note für die Endnote
Literatur
Mühl, T.: Einführung in die elektrische Messtechnik, Springer, 2014
Parthier, R.: Messtechnik, Springer, 2020
Schrüfer, E.; Reindl, L.; Zagar, B.: Elektrische Messtechnik, Hanser, 2018
Bereich „Felder“
Führer, A.; Heidemann, K.; Nerreter, W.: Grundgebiete der Elektrotechnik 1, Hanser, 2020
Albach, M.: Elektrotechnik, Pearson, 2020
Grundlagen Praxisumfeld- PF
- 5 SWS
- 5 ECTS
- PF
- 5 SWS
- 5 ECTS
Nummer
323600
Sprache(n)
de
Dauer (Semester)
1
Kontaktzeit
75h
Selbststudium
75h
Lernergebnisse (learning outcomes)/Kompetenzen
Die Studierenden können im Vertiefungsbereich "Antriebssysteme und Automation (A&A)" die Komponenten eines elektrischen Antriebssystems eigenständig identifizieren und verstehen seine Funktionsprinzipien. Sie erkennen die grundlegende Aufgabe der Komponenten im System. Dieses Wissen ist die Basis für eine spätere Vertiefung im Bereich A&A.
Die Studierenden sollen einen Einblick in das Vertiefungsgebiet "Energieversorgung und Umwelt (E&U)" bekommen. Sie erhalten einen Überblick über die Themen des Hauptstudiums sowie die Tätigkeitsfelder und Aufgabengebiete eines Ingenieurs im Bereich der E&U. An Grundlagenbeispielen werden die charakteristisch notwendigen Fachkompetenzen für diese Vertiefungsrichtung dargestellt. Darüber hinaus sollen sie grundlegende Fragestellungen zur Energieversorgung einordnen und diskutieren können sowie einen einheitlichen Sprachgebrauch für Nenn-, Bemessungs- und Leistungsgrößen elektrischer Versorgungsnetze verwenden.
Die Studierenden erhalten für die Studienvertiefung "Industrieelektronik und Sensorik (I&S)" einen Überblick über die fachlichen Inhalte und Berufsmöglichkeiten. Sie erhalten einen Einblick in elektronische Komponenten und Systeme, sowie wichtiger Entwicklungsmethoden im industriellen Umfeld. Ausserdem wird das Basiswissen der Sensorik in Verbindung mit Elektronik anhand von Praxisbeispielen vermittelt.
Die Korrelation der verschiedenen Vertiefungen im Studiengang Elektrotechnik wird verdeutlicht.
Die Studierenden lernen anschließend als Ergänzung zum vorwiegend technisch geprägten Elektrotechnikstudium auch die grundlegenden betriebswirtschaftlichen Begriffe kennen. Als Vorbereitung für die vergleichende Bewertung der Wirtschaftlichkeit von technischer Ausrüstung im Rahmen der Fachausbildung in den nachfolgenden Semestern erlernen die Studierenden in der BWL die Anwendung von Kosten- und Investitionsrechenverfahren.
Zur Vorbereitung auf die Durchführung von Projekten im beruflichen Umfeld (Unternehmen aber auch Hochschulen/Forschungseinrichtungen) erlernen die Studierenden die Grundlagen des Projektmanagements. Der Fokus hierbei liegt auf Projekten der Forschung und Entwicklung. Die Studierenden lernen Methoden um Projekte zu planen und durchzuführen. Dies umfasst sowohl den Umgang mit Ressourcen als auch mit Personal.
Inhalte
- Einführung in den Aufbau von Antriebssystemen;
- Lineare und rotierende elektrische Maschinen;
- Leistungselektronik;
- Steuerung, Regelung und Automation;
- Lastkennlinien von Arbeitsmaschinen.
Einführung in die Vertiefungsrichtung E&U:
- Studienverlauf, Aufgaben und Perspektiven des Ingenieurs in der E&U, Tätigkeitsfelder;
- Energie- und Umweltdiskussion für die Erde (Primärenergieverbrauch, Pro-Kopf-Verbrauch, Energieformen, -reserven, -ressourcen, Energieeffizienz, Umweltauswirkungen);
- Elektrische Energieversorgung (Nutzung elektrischer Energie, Stromenergieträger und Energieumwandlung, Lastgang und Kraftwerkseinsatz, Stromkreise und Begriffe, Struktur der Energieversorgung und gesetzliche Grundlagen, Energiemarkt);
- Meilensteine der Ingenieurkunst in der E&U (Fernübertragung elektr. Energie, Präsentation ausgewählter Energieversorgungsprojekte);
- Grundbegriffe und Basiswissen (zeitl. Systemzustände, Schwingungsrechnung, Zählpfeilsysteme, Bezeichnungen).
Einführung in die Vertiefungsrichtung I&S:
- Übersicht der Themengebiete und Erläuterung der beruflichen Perspektiven;
- Methoden der Schaltungs- und Systementwicklung;
- Diskrete und integrierte Elektronik;
- Sensoren und deren Anwendung;
- Technische Randbedingungen im industriellen Umfeld;
- Signal- und Datenverarbeitung;
- Simulationswerkzeuge.
Betriebswirtschaftslehre (BWL)
- Rechtsformen
- Unternehmensführung
- Buchführung, Bilanz und GuV
- Kostenrechnung
- Finanzierung
- Investitionsrechenverfahren
- Personal- und Materialwirtschaft
- Produktionsablaufplanung
- Marketing
Projektmanagement (PM)
- Typen von Projekten
- Organisationsformen
- Zeit- und Finanzplanung
- Projektbeschreibung
- Personalführung
- Teamarbeit, Probleme und Konflikte, Besprechungen und Workshops
- Überwachung, Dokumentation / Berichte
Lehrformen
Die allgemeinen Spartencharakteristika werden im Sinne einer Einführungsveranstaltung präsentiert und erläutert. Der Vertiefungsbereich wird an praxisnahen Beispielen dargestellt und diskutiert.
Vorlesung mit Präsentationstechnik und Tafelarbeit, Einbezug der Studierenden durch Fragestellung und Diskussion. Das Vorlesungsskript wird zum Download zur Verfügung gestellt.
Teilnahmevoraussetzungen
Prüfungsformen
Voraussetzungen für die Vergabe von Kreditpunkten
Verwendbarkeit des Moduls (in anderen Studiengängen)
Stellenwert der Note für die Endnote
Literatur
Felderhoff, R.: Leistungselektronik
Brosch, P. F.: Moderne Stromrichterantriebe
K. P. Budig : Drehstromlinearmotoren
Harnischmacher: Skript zur Vorlesung
Flosdorff/Hilgarth: Elektrische Energieverteilung
Clausert/Wiesemann/Hindrichsen/Stenzel: Grundgebiete der Elektrotechnik
Bernstein, Herbert: Messelektronik und Sensoren, Springer Verlag
Schiessle, Edmund: Industriesensorik, Vogel Verlag
Sedra, Adel S.: Microelectronic circuits, Oxford University Press
Schulz, Peter: Digitale Systeme mit FPGAs entwickeln: Vom Gatter zum Prozessor mit VHDL, Elektor Verlag
Tietze, Ulrich; Schenk, Christoph: Halbleiter - Schaltungstechnik, Springer Verlag
Thommen, Achleitner, Gilbert, Hachmeister, Kaiser: Allgemeine Betriebswirtschaftslehre, Springer (2017)
Daum, Greife, Przywara: BWL für Ingenieurstudium und -praxis, Springer (2014)
Carl, Fiedler, Jorasz, Kiesel: BWL kompakt und verständlich, Springer(2017)
Lessel: Projektmanagement, Cornelsen (2002)
Litke: Projektmanagement, Hanser (2007)
Burkhardt: Projektmanagement, Publicis MCD (2000)
Felkai, Beiderwieden: Projektmanagement für technische Projekte, Vieweg+Teubner (2011)
Ebert: Technische Projekte, Wiley-VCH (2002)
Zimmermann, Stark, Rieck: Projektplanung, Springer (2010)
Grundlagenpraktikum 1- PF
- 2 SWS
- 4 ECTS
- PF
- 2 SWS
- 4 ECTS
Nummer
322500
Sprache(n)
de
Dauer (Semester)
1
Kontaktzeit
30h
Selbststudium
90h
Lernergebnisse (learning outcomes)/Kompetenzen
Die Studierenden haben eine Einführung in die Grundlagen der Entwurfs- und Fehlersuchpraxis erhalten. Sie sind in der Lage, Digitalschaltungen überschaubaren Umfangs gemäß Schaltplan aufzubauen und auf Grundlage programmierbarer Schaltkreise rechnergestützt zu entwerfen. Sie können hierbei universelle Prüfmittel wie Oszilloskop und Logikanalysator einsetzen. Auf diesen Grundlagen aufbauend sind sie in der Lage, sich in komplexere Aufgabenstellungen und in die Nutzung von Entwicklungssystemen einzuarbeiten.
Inhalte
In diesem Rahmen erwerben die Studierenden praktische Erfahrungen im Aufbau von und im Umgang mit Methoden, Komponenten, Aufbauten, Messgeräten und rechnerbasierten Werkzeugen.
Digitaltechnik:
Aufbau und Inbetriebnahme von Digitalschaltungen (kombinatorische und sequentielle Grundschaltungen) mit Gattern und Flipflops, sowie mit programmierbaren Schaltkreisen.
- Die Aufgabenstellungen betreffen anwendungsrelevante Teilschaltungen sowie überschaubare, praxisnahe Projekte (z. B. Decoder, Zähler und Schieberegister, Stoppuhr, Impulsmustergenerator).
- Versuchsplattform: PC mit Entwicklungssystem und verschiedene Evaluierungsplattformen.
- Entwurfsmethodik: Überwiegend rechnergestützter Entwurf über Schaltplan.
Elektrotechnik 1:
- Knotenpunkt-Potential-Analyse linearer Gleichstromnetze
- Komplexe Grundzweipole
- Frequenzselektiver Spannungsteiler
Lehrformen
Experimente im Labor und praktische Umsetzung des Erlernten durch die Studierenden. Arbeiten in kleinen Gruppen, die sich selbst organisieren und koordinieren.
Teilnahmevoraussetzungen
Prüfungsformen
Voraussetzungen für die Vergabe von Kreditpunkten
Verwendbarkeit des Moduls (in anderen Studiengängen)
Stellenwert der Note für die Endnote
Literatur
Beuth, Klaus: Digitaltechnik - Elektronik 4, Vogel Verlag
Ulrich Tietze, Christoph Schenk, Eberhard Gamm: Halbleiter - Schaltungstechnik, Springer Verlag
Matthes, Wolfgang: Embedded Electronics 2 - Digitaltechnik, Elektor Verlag
Wagner, A.: Elektrische Netzwerkanalyse. - Books on Demand, Norderstedt 2001
Mathematik 2- PF
- 6 SWS
- 7 ECTS
- PF
- 6 SWS
- 7 ECTS
Nummer
322100
Sprache(n)
de
Dauer (Semester)
1
Kontaktzeit
90h
Selbststudium
120h
Lernergebnisse (learning outcomes)/Kompetenzen
• Integrale verschiedener Funktionen einer Veränderlichen mit unterschiedlichen Integrationstechniken lösen
• homogene und inhomogene gewöhnliche Differentialgleichungen 1. und 2. Ordnung lösen
• Grundbegriffe der Matrizentheorie erklären
• Eigenwerte und Eigenvektoren berechnen
Inhalte
Hauptsatz der Differential- und Integralrechnung, Mittelwertsatz der Integralrechnung,
Integrationstechniken: Elementare Rechenregeln, partielle Integration, Substitution, Partialbruchzerlegung,
uneigentliche Integrale,
numerische Integration(Rechteck - , Trapez - und Simpsonregel)
Gewöhnliche lineare Differentialgleichungen:
Lineare Differentialgleichungen 1. Ordnung: Trennung der Veränderlichen, Variation der Konstanten, Anfangswertprobleme
Lineare Differentialgleichungen 2. Ordnung mit konstanten Koeffizienten, allgemeine Lösung der inhomogenen DGL (Variation der Konstante)
Elektrische Schaltungen und Differentialgleichungen
Vektorräume, Unterräume,
lineare Unabhängigkeit, Basis, Dimension, Kern, Bild, Rang von Matrizen,
Eigenvektoren und Eigenwerte
Lehrformen
In den Übungen beschäftigen sich die Studierenden selbstständig mit der Lösung von Aufgaben und setzen sich dadurch mit den Begriffen, Aussagen und Methoden aus der Vorlesung auseinander.
Teilnahmevoraussetzungen
Inhaltlich: Mathematik 1
Prüfungsformen
Voraussetzungen für die Vergabe von Kreditpunkten
Verwendbarkeit des Moduls (in anderen Studiengängen)
Stellenwert der Note für die Endnote
Literatur
Brauch/Dreyer/Haacke: Mathematik für Ingenieure, B.G. Teubner 1995
Stingl, Peter: Mathematik für Fachhochschulen, Carl-Hanser Verlag 1999
Papula, Lothar: Mathematische Formelsammlung, Vieweg, Braunschweig-Wiesb. 2000
Fetzer, Fränkel: Mathematik 1-2, Springer-Verlag, 2004
Preuß, Wenisch: Mathematik 1-3, Hanser-Verlag, 2003
Feldmann: Repetitorium Ingenieurmathematik, Binomi-Verlag, 1994
Physik 2- PF
- 3 SWS
- 5 ECTS
- PF
- 3 SWS
- 5 ECTS
Nummer
322200
Sprache(n)
de
Dauer (Semester)
1
Kontaktzeit
45h
Selbststudium
105h
Lernergebnisse (learning outcomes)/Kompetenzen
Mit Abschluss des Moduls sind die Studierenden in der Lage für Elektroingenierure relevante Grundkenntnisse aus dem Bereich Schwingungen, Wellen und Optik und die zugrundeliegenden physikalischen Grundsätze auf Problemstellungen anzuwenden.
Die Abstraktionsfähigkeit, die Problemlösungskompetenz und die Kritikfähigkeit wird geschult. Sie haben Fähigkeit, verbal formulierte Probleme zu formalisieren und die relevanten naturwissenschaftlich physikalischen Hintergründe zu erkennen und zu begründen. Sie sind in der Lage neuer Inhalte auf Basis des bekannten Stoffes selbstständig zu erarbeiten.
Inhalte
- freie harmonische Schwingungen
- gedämpfte Schwingungen
- erzwungene Schwingungen
- Pendelbewegungen
- Überlagerung und Kopplung von Schwingungen
- harmonische Wellen, ihre Ausbreitung, Überlagerung
- Interferenz und Beugung
- Grenzen des Wellenmodells
- Photoeffekt und Spektren
Optik:
- Lichtausbreitung
- geometrische Optik
- optische Instrumente (Fernrohr, Mikroskop,...)
- Wellenoptik
- Spektralanalyse
Lehrformen
Teilnahmevoraussetzungen
Inhaltlich: Physik1, Mathematik 1
Prüfungsformen
Voraussetzungen für die Vergabe von Kreditpunkten
Verwendbarkeit des Moduls (in anderen Studiengängen)
Stellenwert der Note für die Endnote
Literatur
Tipler, Physik, Spektrum Verlag
3. Studiensemester
Elektronik- PF
- 6 SWS
- 6 ECTS
- PF
- 6 SWS
- 6 ECTS
Nummer
323400
Sprache(n)
de
Dauer (Semester)
1
Kontaktzeit
90h
Selbststudium
90h
Lernergebnisse (learning outcomes)/Kompetenzen
Die Studierenden kennen zudem anwendungspraktisch wichtige Grundschaltungen. Sie verstehen deren Funktion und sind in der Lage, die Eignung dieser Grundschaltungen für typische Anwendungsfälle zu beurteilen und entsprechende Funktionseinheiten auf Grundlage von allgemein üblichen Schaltungslösungen zu entwickeln und zu dimensionieren. Die Studierenden kennen die grundsätzlichen Begriffe, Zusammenhänge und Wirkprinzipien. Von diesen Grundkenntnissen ausgehend sind sie in der Lage, sich in den jeweils aktuellen Stand der Technik und in die Anforderungen der Praxis einzuarbeiten.
Inhalte
- Physikalische Grundlagen
- pn-Übergang, Diodentypen
- Transistoren (Bipolar-, Feldeffekttransistoren)
- Operationsverstärker
- Passive Bauelemente
Schaltungstechnik:
- Grundlagen der Schaltungsberechnung (Netzwerkanalyse)
- Diodenschaltungen
- DC- und AC-Schaltungsberechnungen
- Kleinsignalersatzschaltbilder
- Transistoren im Schalt- und Verstärkerbetrieb
- Schaltungen mit Operationsverstärkern und Komparatoren
Lehrformen
In den Übungen wird dieses Wissen durch das Lösen von Problemstellungen mit geeigneten Methoden vertieft.
Sowohl in der Vorlesung als auch in den Übungen werden neben der Theorie auch Praxisprobleme angesprochen (Entwicklungsmethodik, Dimensionierung, Systemintegration)
Teilnahmevoraussetzungen
Prüfungsformen
Voraussetzungen für die Vergabe von Kreditpunkten
Verwendbarkeit des Moduls (in anderen Studiengängen)
Stellenwert der Note für die Endnote
Literatur
Böhmer, Erwin: Elemente der angewandten Elektronik, Vieweg+Teubner Verlag
Göbel, Holger: Einführung in die Halbleiter-Schaltungstechnik, Springer Verlag
Horowitz, Paul: The art of electronics, Cambridge Univ. Press
Reisch, Michael: Elektronische Bauelemente, Springer Verlag
Sedra, Adel S.: Microelectronic circuits, Oxford University Press
Sze, S.M.: Physics of semiconductor devices, Wiley
Tietze, Ulrich; Schenk Christoph: Halbleiter - Schaltungstechnik, Springer Verlag
Grundlagenpraktikum 2- PF
- 3 SWS
- 6 ECTS
- PF
- 3 SWS
- 6 ECTS
Nummer
323500
Sprache(n)
de
Dauer (Semester)
1
Kontaktzeit
45h
Selbststudium
135h
Lernergebnisse (learning outcomes)/Kompetenzen
Die Studierenden sind in der Lage, elementare elektronische Schaltungen gemäß Schaltplan aufzubauen und zu erproben. Sie können Labornetzgeräte, Multimeter, Funktionsgeneratoren und Oszilloskope einsetzen, um typische Kennwerte und Leistungsdaten sowie die jeweilige Funktionsweise messtechnisch zu überprüfen.
Das Praktikum stellt die Ergänzung und Anwendung der vermittelten Theorie dar. Die Studierenden üben die praktische Durchführung von Messvorgängen, die Auswertung der Messergebnisse, die Dokumentation und Präsentation der Ergebnisse. Die Studenten werden angeleitet, ihre Aufgaben im Team zu bearbeiten und ihre Arbeit zu koordinieren. Das Praktikum befähigt sie zum sicheren Umgang mit Messgeräten und -verfahren.
Die experimentellen Ergebnisse sollen in einem wissenschaftlichen Bericht schriftlich dargestellt werden.
Inhalte
Physik:
- Fadenpendel, Federpendel, Physisches Pendel
- Massenträgheitsmoment, Schubmodul (dynamisch), Maxwellsches Rad
- Adiabatenexponent nach Flammersfeld und Rüchardt, Mohrsche Waage
- Bestimmung von Messabweichungen und -unsicherheiten
- Darstellung der Ergebnisse in Tabellen und Diagrammen; Lineare Regression; Linearisierung
Elektronik:
- Messtechnische Erfassung des Verhaltens sowie relevanter Kennlinien von Halbleiterbauelementen (Dioden, Bipolartransistoren, Feldeffekttransistoren).
- Aufbau und Vermessung wichtiger Grundschaltungen und Verbundschaltungen unter Verwendung aktiver und passiver Bauelemente (Diodenschaltungen, Transistor-Grundschaltungen).
- Transistor im Schalt- und Verstärkerbetrieb
- Operationsverstärker-Schaltungen
- Kippstufen
Elektrotechnik:
- Arbeiten mit dem Oszilloskop: Funktionen und Bedienelemente des Oszilloskops, Kalibrierung des Gerätes und der Messteiler, Durchführung von Messungen, Frequenzgang, Sprungantwort
- Aufbau und Funktion eines Umkehrverstärkers mittels Operationsverstärker und Einsatz eines Digital /Analog –Konverters mit R-2R – Netzwerk
- Messung magnetischer und elektrischer Feldgrößen: Messung der Magnetisierung in Luft und in Eisen, Hystereseschleifen als Mittel zur Bestimmung magnetischer Eigenschaften und Verluste.
Lehrformen
Die Studierenden erarbeiten die Schaltungslösung bzw. Dimensionierung gemäß der jeweiligen Aufgabe, entwickeln funktionsfähige Hardware und führen die jeweiligen Messungen durch. Einige Teilaufgaben beschränken sich auf Messungen an fertig aufgebauten Demonstrationsplattformen (Zeitersparnis).
Praktische Umsetzung des Erlernten durch die Studierenden. Arbeiten in kleinen Gruppen, die sich selbst organisieren und koordinieren.
Teilnahmevoraussetzungen
Prüfungsformen
Voraussetzungen für die Vergabe von Kreditpunkten
Verwendbarkeit des Moduls (in anderen Studiengängen)
Stellenwert der Note für die Endnote
Literatur
Göbel, Holger: Einführung in die Halbleiter-Schaltungstechnik, Springer Verlag
Ulrich Tietze, Christoph Schenk, Eberhard Gamm: Halbleiter - Schaltungstechnik, Springer Verlag
Böhmer, Erwin: Elemente der angewandten Elektronik, Vieweg+Teubner Verlag
Horowitz, Paul: The art of electronics, Cambridge Univ. Press
Matthes, Wolfgang: Embedded Electronics 1 - Passive Bauelemente, Elektor Verlag
Versuchsanleitungen zum Praktikum ET 2
Thomas Mühl - Einführung in die Elektrische Messtechnik
Rainer Parthier - Messtechnik
IT-Projekt- PF
- 5 SWS
- 7 ECTS
- PF
- 5 SWS
- 7 ECTS
Nummer
323300
Sprache(n)
de
Dauer (Semester)
1
Kontaktzeit
75h
Selbststudium
135h
Lernergebnisse (learning outcomes)/Kompetenzen
Schlüsselkompetenzen - Rhetorik und Präsentation im IT-Projekt (SV)
- Inhalte zielgruppenorientiert aufbereiten
- Anwenden der wichtigsten Präsentationsgrundsätze
- Feedback geben und nehmen
- Präsentation der erarbeiteten Ergebnisse im Team
Praktikum zum IT-Projekt (P):
- Arbeiten im Team
- selbstständiges Bearbeiten von Projekten
- Einhaltung von vorgegebenen Schnittstellendefinitionen und Randbedingungen
- Umsetzung der theoretischen Grundlagen
- Anwendung verschiedener Sprachen in einem gemeinsamen Projekt
- Erstellung und Dokumentation von Teilmodulen komplexerer Software-Systeme
Inhalte
Definition von Rhetorik bzw. angewandter Rhetorik, Überzeugungsmittel nach Aristoteles,
5 Punkte für den Erfolg einer Präsentation:
- Ziel und Struktur: Thema, Ziel, Zielgruppe, Didaktik, Struktur
- persönliche Kommunikation + Performance: Sprache (Körpersprache,Stimme,Inhalt), Kleidung, persönliches Auftreten, Umgang mit dem Publikum
- Gestaltung: Medien, Foliengestaltung
- Gruppenarbeit: Rollen- und Aufgabenverteilung, Teamarbeit
- Formalitäten: Quellenangabe
Praktikum zum IT-Projekt:
In diesem Praktikum werden die theoretischen Grundprinzipien der Softwareentwicklung und die Schlüsselkompetenzen zur Projektdokumentation und -präsentation durch Bearbeitung einer abgeschlossenen Aufgabenstellung, die alle relevanten Aspekte abdeckt, praktisch umgesetzt.
Mögliche Aufgabenstellungen sind dabei:
- Entwicklung verteilter Softwaresysteme
- Programmierung ergonomischer Benutzerschnittstellen (Menüs und Fenstertechniken)
- Programmierung von Softwareschnittstellen aus den fachlichen Vertiefungsbereichen des Fachbereiches Elektrotechnik
- Programmieraufgaben zur Lösung ingenieurwissenschaftlicher Fragestellungen
- Recherchen im Internet oder der Bibliothek bezogen auf die Funktionsweise realer, technisch ausgeführter Anlagen/Geräte
Lehrformen
Praktikum, in dem verschiedene Projekte unter Anleitung und Vorgabe von Aufgabenstellungen durchgeführt werden.
Teilnahmevoraussetzungen
Inhaltlich: Digitale Informationstechnik 2
Prüfungsformen
Voraussetzungen für die Vergabe von Kreditpunkten
Verwendbarkeit des Moduls (in anderen Studiengängen)
Stellenwert der Note für die Endnote
Literatur
Lewis R. W.: Programming industrial control systems using IEC 1131-3 (Rev. ed.)
Bonfati, Monari, Sampieri: IEC1131-3 Programming Methodology
Mohn, Tiegelkamp: SPS-Programmierung mit IEC1131-3
Rammer Ingo: Advanced .NET Remoting, Apress
MacDonald Matthew: User Interfaces in C#/VB.NET, Apress
Jones, Ohlund, Olson: Network Programming for .NET, Microsoft Pres
allgemeine Bücher zur SPS-Technik
Webseiten der Unternehmen WAGO und Beckhoff
Kai Luppa: Skript und Lastenheft zum IT-Projekt
Kai Luppa: Skript Grundlagen Programmierung / Softwaretechnik, FH Dortmund
Robin Nixon: Learning PHP, MySQL & JavaScript: With jQuery, CSS & HTML5 (Learning Php, Mysql, Javascript, Css & Html5), O'REILLY
W.H. Press et al., Numerical Recipes; Cambridge University Press, 2007
Rob Williams: "Real-Time Systems Development", Elsevier 2006
Jack Ganssle: "The Firmware Handbook", Elsevier 2004
Jack Ganssle: "The Art of Designing Embedded Systems", Newnes 2008
Thomas Kibalo: "Beginner's Guide to Programming the PIC32", Electronic Products, 2013
Cord Elias: "FPGAs für Maker", dpunkt.verlag, 2016
Design Patterns. Elements of Reusable Object-Oriented Software, Addison-Wesley 2009
Mehrphasensysteme- PF
- 3 SWS
- 4 ECTS
- PF
- 3 SWS
- 4 ECTS
Nummer
323210
Sprache(n)
de
Dauer (Semester)
1
Kontaktzeit
45h
Selbststudium
75h
Lernergebnisse (learning outcomes)/Kompetenzen
Inhalte
(Erzeugung von Ein- und Mehrphasensystemen, symmetrisches Strom- und Spannungssystem, Drehoperatoren, balancierte und verkettete Mehrphasensysteme);
- Drehstromsysteme
(Symmetrisch und unsymmetrisch verkettete Drehstromsysteme, komplexe Berechnung, Leistungsmessung);
- Methode der symmetrischen Komponenten
(Transformationsvorschrift und -eigenschaften, Ersatzschaltbilder und Messschaltungen);
- Nachbildung unsymmetrischer Netzzustände
(Darstellung von Parallel- und Längsunsymmetrien in symmetrischen Komponenten, Berechnung von Unsymmetrien im Drehstromnetz);
- Drehstromtransformatoren
(Aufbau, Einsatzgebiete, Funktionsweise, Ersatzschaltung, Schaltungen, Schaltgruppen, symmetrische Komponenten bei Drehstromtrafos, Sternpunktbehandlung)
Lehrformen
Das Vorlesungsskript wird zum Download im Netz zur Verfügung gestellt.
Teilnahmevoraussetzungen
Inhaltlich: Grundlagen der Elektrotechnik, insb. Wechselstromtechnik
Prüfungsformen
Voraussetzungen für die Vergabe von Kreditpunkten
Verwendbarkeit des Moduls (in anderen Studiengängen)
Stellenwert der Note für die Endnote
Literatur
Flosdorff/Hilgarth: Elektrische Energieverteilung,
Clausert/Wiesemann/Hindrichsen/Stenzel: Grundgebiete der Elektrotechnik,
Schlabbach: Elektroenergieversorgung,
Harnischmacher: Skript zur Vorlesung Mehrphasensysteme.
Transformationen- PF
- 3 SWS
- 4 ECTS
- PF
- 3 SWS
- 4 ECTS
Nummer
323100
Sprache(n)
de
Dauer (Semester)
1
Kontaktzeit
45h
Selbststudium
75h
Lernergebnisse (learning outcomes)/Kompetenzen
Inhalte
Rechteck-, Sprung-, Dirac-, si-Funktion, Fourier-Reihe, harmonische Analyse/Synthese nichtsinusförmiger periodischer Vorgänge
- Transformationen
Fourier-Transformation, Laplace-Transformation, Fast-Fourier-Transformation
- Systeme
Faltung, Übertragungsverhalten, Frequenzverhalten von Netzwerken, Filternetzwerke, Ortskurven, Bode-Diagramm, Spektren
- zeitdiskrete Signale und Systeme
diskrete Fourier-Transformation, Abtasttheorem, z-Transformation, Digitalfilter
Lehrformen
Teilnahmevoraussetzungen
Inhaltlich: Mathematik 1 und 2, Elektrotechnik 1
Prüfungsformen
Voraussetzungen für die Vergabe von Kreditpunkten
Verwendbarkeit des Moduls (in anderen Studiengängen)
Stellenwert der Note für die Endnote
Literatur
Moeller, Fricke u.a.: Grundlagen der Elektrotechnik, Teubner, Stuttgart 1967
Martin Werner: Signale und Systeme, 3. Auflage, Vieweg+Teubner, 2008
Uwe Kiencke, Holger Jäkel: Signale und Systeme, 4. Auflage, Oldenbourg Verlag München Wien, 2008
Horst Clausert, Gunther Wiesemann: Grundgebiete der Elektrotechnik 2: Wechselströme, Drehstrom, Leitungen, Anwendungen der Fourier-, der Laplace- und der z-Transformation, De Gruyter Oldenbourg 2002
4. Studiensemester
Elektrische Maschinen- PF
- 4 SWS
- 6 ECTS
- PF
- 4 SWS
- 6 ECTS
Nummer
324110
Sprache(n)
de
Dauer (Semester)
1
Kontaktzeit
60h
Selbststudium
120h
Lernergebnisse (learning outcomes)/Kompetenzen
Praktikum:
An Transformator, Asynchron- und Synchronmaschine werden verschiedene praktische Versuche durchgeführt und deren Betriebsverhalten verstanden.
Inhalte
Praktikum:
Klassische Versuchsanordnungen zu Transformator, Asynchron- und Synchronmaschine: Leerlauf, Kurzschluss, Belastung. Auswertung der Messergebnisse und Darstellung charakteristischer Kurven in Excel.
Lehrformen
Praktikum:
Die in der Vorlesung vermittelte Theorie wird durch praktische Versuche vertieft und ergänzt. Die einzelnen Versuche sind in speziellen Anleitungen ausführlich beschrieben. Es wird erwartet, dass der/die Studierende sich auf den Praktikumsversuch vorbereitet d.h. ihm/ihr die Aufgabenstellung vertraut ist und er/sie die zugrunde liegende Theorie beherrscht. Die Versuche werden unter fachlicher Aufsicht im Team selbstständig durchgeführt und in einer gemeinsamen Ausarbeitung dokumentiert und diskutiert.
Teilnahmevoraussetzungen
Prüfungsformen
Praktikum: unbenoteter Teilnahmenachweis
Voraussetzungen für die Vergabe von Kreditpunkten
Praktikum: Unbenoteter Teilnahmenachweis muss erbracht sein
Verwendbarkeit des Moduls (in anderen Studiengängen)
Stellenwert der Note für die Endnote
Literatur
Hofmann: Elektrische Maschinen, Pearson, 2013
Leistungselektronik- PF
- 4 SWS
- 6 ECTS
- PF
- 4 SWS
- 6 ECTS
Nummer
324120
Sprache(n)
de
Dauer (Semester)
1
Kontaktzeit
60h
Selbststudium
120h
Lernergebnisse (learning outcomes)/Kompetenzen
Praktikum:
Das Praktikum stellen eine wichtige Ergänzung der in den Vorlesungen vermittelten Theorie dar. Die Studierenden lernen, mit leistungselektronischen Geräten umzugehen, üben sich in der Handhabung hochwertiger Messgeräte wie digitalen Strom-, Spannungs-, und Leistungsmessern, Oszilloskopen bis hin zu rechnergestützten Messsystemen und Simulationsprogrammen. Sie werden angehalten, im Team zu arbeiten und ihre Messergebnisse in systematischer und übersichtlicher Form zu dokumentieren.
Inhalte
Inhalte: - Aufbau, Funktion und Eigenschaften moderner Leistungshalbleiter
- Nichtkommmutierende, netz- und selbstgeführte Stromrichterschaltungen
- Modulationsverfahren
Praxisnahe Anwendungen:
- Wechselrichterschaltungen im industriellen Einsatz
- DC/DC-Wandler
- Drehzahlsteuerung mittels Frequenzumrichter
Praktikum:
Versuch 1 Kennlinien von Leistungshalbleitern
Diode, Thyristor, MOS-FET, IGBT
Messungen: Kennlinien der Bauelemente
Versuch 2 Gleichrichter in Einpulsschaltung (M1)
Ungesteuerte und gesteuerte M1-Schaltungen bei unterschiedlichen Lasten
Messungen: Strom- und Spannungsverläufe, Steuerkennlinien
Versuch 3 Wechselstromsteller (W1) und Zweipuls-Mittelpunktschaltung (M2)
W1-Schaltung bei ohmscher und ohmsch-induktiver Last
M2-Schaltung mit und ohne Glättungsdrossel,
Messungen: Strom- und Spannungsverläufe, Steuerkennlinien,
Wirk- und Blindleistungsverläufe, Lückbetrieb
Lehrformen
Praktikum:
Die in der Vorlesung vermittelte Theorie wird durch praktische Versuche vertieft und ergänzt. Die einzelnen Versuche sind in speziellen Anleitungen ausführlich beschrieben. Es wird erwartet, dass der/die Studierende sich auf den Praktikumsversuch vorbereitet d.h. ihm/ihr die Aufgabenstellung vertraut ist und er/sie die zugrunde liegende Theorie beherrscht. Die Versuche werden unter fachlicher Aufsicht im Team selbstständig durchgeführt und in einer gemeinsamen Ausarbeitung dokumentiert und diskutiert.
Teilnahmevoraussetzungen
Prüfungsformen
Praktikum: Unbenoteter Teilnahmenachweis
Voraussetzungen für die Vergabe von Kreditpunkten
Praktikum: Unbenoteter Teilnahmenachweis muss erbracht sein
Verwendbarkeit des Moduls (in anderen Studiengängen)
Stellenwert der Note für die Endnote
Literatur
Michel, Manfred: Leistungselektronik
Specovius, Joachim: Grundkurs Leistungselektronik
Schröder, D. Elektrische Antriebe – Band 4: Leistungselektronische Schaltungen, Felderhoff, R. Leistungselektronik
Probst, Uwe: Leistungselektronik für Bachelors
Brosch, P. F. Moderne Stromrichterantriebe
Versuchsanleitungen Fachpraktikum Leistungselektronik
Vorlesungsskript Leistungselektronik
Mikrocontrollertechnik- PF
- 4 SWS
- 6 ECTS
- PF
- 4 SWS
- 6 ECTS
Nummer
324140
Sprache(n)
de
Dauer (Semester)
1
Kontaktzeit
60h
Selbststudium
120h
Lernergebnisse (learning outcomes)/Kompetenzen
Praktikum:
Die Studierenden sind imstande, typische Teilaufgaben der Entwicklung von Embedded Systems programmtechnisch zu lösen und die übliche E-A-Ausstattung der Mikrocontroller (E-A-Ports, Zähler/Zeitgeber, Schnittstellensteuerungen, A/D-Wandler) einzusetzen. Sie sind zudem in der Lage, die von den Herstellern angebotenen Mittel zum Kennenlernen von Mikrocontrollerfamilien – also integrierte Entwicklungsumgebungen und Starterkits – auszunutzen, um sich mit bestimmten Controllertypen vertraut zu machen.
Inhalte
- Grundsätzlicher Aufbau von Mikrocontroller und deren Einsatz in Anwendungen
- Prozessorarchitekturen (z. B. RISC-V)
- Pipelining
- Prozessorperipherie und Interfacetechniken, wie z.B. AD- und DA-Wandler oder Pulsbreitenmodulation
- Typische Kommunikationsschnittstellen (z.B. UART, SPI, I2C)
- Watchdogs, Interrupts, Timer und DMA-Prinzipien
- Grundlagen der hardwarenahen Programmierung von Mikrocontrollern
Praktikum:
Es werden Versuche zu hardwarenahen Programmierung durchgeführt, die grundlegende Funktionen eines Mikrocontroller wie die Nutzung von E-A-Ports, einer seriellen Schnittstelle, Interruptserviceroutinen, Watchdogmechanismen oder eines Timers beinhalten. Die Funktionen werden mit Hilfe geeigneter Peripheriemodule (z. B. Abstandssensor) erörtert.
Lehrformen
Praktikum:
Die Studierenden lernen den Umgang mit Mikrocontrollern zur Lösung gängiger technischer Probleme.
Teilnahmevoraussetzungen
Prüfungsformen
Praktikum: Unbenoteter Teilnahmenachweis
Voraussetzungen für die Vergabe von Kreditpunkten
Praktikum: Unbenoteter Teilnahmenachweis muss erbracht sein
Verwendbarkeit des Moduls (in anderen Studiengängen)
Stellenwert der Note für die Endnote
Literatur
Brinkschulte, Ungerer: „Mikrocontroller Mikroprozessoren“, Springer, 2010
Patterson, Hennessey: "Computer Organization and Design RISC-V Edition: The Hardware Software Interface", Morgan Kaufmann, 2017
White: "Making Embedded Systems", O'Reilly Media, 2011
Netze- PF
- 3 SWS
- 3 ECTS
- PF
- 3 SWS
- 3 ECTS
Nummer
324220
Sprache(n)
de
Dauer (Semester)
1
Kontaktzeit
45h
Selbststudium
45h
Lernergebnisse (learning outcomes)/Kompetenzen
Inhalte
- Elektrische Netze (Aufgaben und Netzprinzip, Schaltungen und Spannungsebenen, Netzstrukturen, Lastgang und Kraftwerkseinsatz, Lastmerkmale, Gleichzeitigkeitsgrad)
- Netzberechnung und Leistungsfluss im ungestörten Betrieb (Ersatzschaltungen von Leitungen, Spannungsfall, natürliche Leistung, Blindleistungsproblematik, Lastverlagerung)
- Kurzschlussstrom-Berechnung (Kurzschlussursachen, Fehlerarten und Kurzschlusswirkungen, zeitlicher Verlauf des Kurzschlussstromes, generatorferne und generatornahe Fehler, Kurzschlussstromberechnung mit dem Verfahren der Ersatzspannungsquelle)
- Sternpunktbehandlung (symmetrische Komponenten, Erdschluss, Erdschlusskompensation, niederohmige Sternpunkterdung).
Lehrformen
Das Vorlesungsskript und Aufgabensammlungen werden zum Download im Netz zur Verfügung gestellt.
Teilnahmevoraussetzungen
Inhaltlich: Grundlagen Elektrotechnik, Mehrphasensysteme
Prüfungsformen
Voraussetzungen für die Vergabe von Kreditpunkten
Verwendbarkeit des Moduls (in anderen Studiengängen)
Stellenwert der Note für die Endnote
Literatur
Flosdorff, R., Hilgarth, G.: Elektrische Energieverteilung, Vieweg+Teubner Verlag Wiesbaden
Heuck, K.; Dettmann, K.-D.;Schulz, D.: Elektrische Energieversorgung, Vieweg+Teubner Verlag
Schlabbach, J.: Elektroenergieversorgung,VDE-Verlag Berlin
Nelles, D. u.a.: Kurzschlussstromberechnung, VDE-Verlag Berlin
Pistora, G.: Berechnung von Kurzschlussströmen und Spannungsfällen, VDE-Verlag Berlin
Harnischmacher: Skript zur Vorlesung Netze, Praktikumsanleitung, Software-Tutorial
Regelungstechnik- PF
- 4 SWS
- 6 ECTS
- PF
- 4 SWS
- 6 ECTS
Nummer
324130
Sprache(n)
de
Dauer (Semester)
1
Kontaktzeit
60h
Selbststudium
120h
Lernergebnisse (learning outcomes)/Kompetenzen
- Theorie dynamischer Systeme zur Analyse und Synthese von Regelungssystemen
- Theoretische und experimentelle Modellbildungsmethoden
- Entwurf und Parametrieren einschleifiger Eingrößenregelungen
Praktikum:
Selbständiger Umgang mit rechnergestützen Entwurfs- und Simulationsverfahren in der Regelungstechnik.
Inhalte
- Beschreibung linerarer, zeitkontinuierlicher und Systeme im Zeit- und Frequenzbereich (Zustandsraumdarstellung, Laplace-Transformation, Frequenzgangdarstellung)
- Einfache Methoden der Stabilitätstanalyse von Regelkreisen
- Standardübertragungsglieder und -Regler- Behandlung vermaschter Systeme
- Heuristische und analytische Verfahren der Reglersynthese für einschleifige Eingrößenregelungen.
- Experimentelle Modellbildung
Praktikum:
Versuch 1: Einführung in die Regelungstechnik: Aufbau eines Regelkreises
Versuch 2: Analyse und Synthese der Standardübertragungsglieder
Versuch 3: Experimentelle Modellbildung und Reglerentwurf von industriellen Standardreglern
Lehrformen
Praktikum:
Das Praktikum wird in jedem Versuch rechnergestützt ausgeführt. Hierfür stehen im Labor das Programm-Paket MATLAB mit einer entsprechenden Control-Tool-Box und dem Simulationswerkzeug SIMULINK sowie eine SPS mit zugehöriger Entwicklungsumgebung zur Verfügung. Die in der Vorlesung vermittelte Theorie wird durch praktische Versuche vertieft und ergänzt. Die einzelnen Versuche sind in speziellen Anleitungen ausführlich beschrieben. Es wird erwartet, dass der/die Studierende sich auf den Praktikumsversuch vorbereitet d.h. ihm/ihr die Aufgabenstellung vertraut ist und er/sie die zugrunde liegende Theorie beherrscht. Die Versuche werden unter fachlicher Aufsicht im Team selbstständig durchgeführt und in einer gemeinsamen Ausarbeitung dokumentiert und diskutiert.
Teilnahmevoraussetzungen
Inhaltlich: Transformationen
Prüfungsformen
Praktikum: Unbenoteter Teilnahmenachweis
Voraussetzungen für die Vergabe von Kreditpunkten
Praktikum: Unbenoteter Teilnahmenachweis muss erbracht sein
Verwendbarkeit des Moduls (in anderen Studiengängen)
Stellenwert der Note für die Endnote
Literatur
Unbehauen, H.: Regelungstechnik 1
Sensor-, Aktortechnik- PF
- 3 SWS
- 3 ECTS
- PF
- 3 SWS
- 3 ECTS
Nummer
324150
Sprache(n)
de
Dauer (Semester)
1
Kontaktzeit
45h
Selbststudium
45h
Lernergebnisse (learning outcomes)/Kompetenzen
Inhalte
- Grundbegriffe und Klassifizierungen
- Anforderungen und Auswahlkriterien
- Statisches und dynamisches Verhalten
Systembetrachtung:
- Kombination einzelner Komponenten zu Sensorsystemen
- Messdatenaufbereitung und -beurteilung, Kalibrierung und Qualitätssicherung
- Schnittstellen zu Automatisierungssystemen
Ausgewählte Anwendungen aus der Automatisierung und Fertigung:
- Berührende Verfahren zur Positions- und Abstandsmessung (z. B. Taster/ Schalter, potentiometrische Sensoren, Seilzugsensoren)
- Optische Verfahren zur Positions- und Abstandsmessung (z. B. Lichtschranken, Lasertriangulation, Auswertung der Lichtlaufzeit, digitale Messverfahren)
- Einsatz von Dehnungsmessstreifen (DMS) z. B. zur Bestimmung von Kräften, Drehmomenten oder Vibrationen
Lehrformen
Teilnahmevoraussetzungen
Inhaltlich: Physik, Mathematik, Elektrotechnik 1, Wiss. Arbeiten, Digitaltechnik & Bauelemente
Prüfungsformen
Voraussetzungen für die Vergabe von Kreditpunkten
Verwendbarkeit des Moduls (in anderen Studiengängen)
Stellenwert der Note für die Endnote
Literatur
Tränkler, H.-R.; Reindl, L. M.: Sensortechnik, Springer, 2014
Schiessle, E.: Industriesensorik, Vogel, 2016
Gevatter, H.-J.; Grünhaupt, U.: Handbuch der Mess- und Automatisierungstechnik in der Produktion, Springer, 2006
Mühl, T.: Einführung in die elektrische Messtechnik, Springer, 2014
5. Studiensemester
Digitale Regelungstechnik- PF
- 4 SWS
- 6 ECTS
- PF
- 4 SWS
- 6 ECTS
Nummer
325130
Sprache(n)
de
Dauer (Semester)
1
Kontaktzeit
60h
Selbststudium
120h
Lernergebnisse (learning outcomes)/Kompetenzen
- Kenntnis von Abtast- und Haltevorgängen und deren Beschreibung im z-Bereich
- Diverse Reglerentwurfsverfahren im s- und z-Bereich
- Implementierung digitaler Regelalgorithmen
- Wichtige Bedingungen und Algorithmen der digitalen Regelungstechnik
Praktikum:
Selbständiger Umgang mit rechnergestützten Entwurfs- und Simulationsverfahren in der Regelungstechnik sowie Beherrschen diverser Verfahren zum Entwurf digitaler Regler.
Inhalte
- Beschreibung linearer, zeitkontinuierlicher und zeitdiskreter Systeme (z-Transformation)
- Einfache Methoden der Stabilitätstanalyse von Regelkreisen im z-Bereich
- Quasikontinuierliche Regelung
- Kompensationsreglerentwurf im s- und z-Bereich
- Entwurf von kaskadierten Reglern
- Wichtige Algorithmen der Regelungstechnik: z. B. Anti-Windup-Verfahren, Skalierung und Linearisierung von Mess- und Stellgrößen
Praktikum (3 Versuche):
- Experimentelle Modellbildung und Reglerentwurf von industriellen Standardreglern als digitaler Regler
- Digitaler Kompensationsregler
- Kaskadenregelung
Lehrformen
Praktikum:
Das Praktikum wird in jedem Versuch rechnergestützt ausgeführt. Hierfür stehen im Labor das Programm-Paket MATLAB mit einer entsprechenden Control-Tool-Box und dem Simulationswerkzeug SIMULINK sowie eine SPS mit zugehöriger Entwicklungsumgebung zur Verfügung. Die in der Vorlesung vermittelte Theorie wird durch praktische Versuche vertieft und ergänzt. Die einzelnen Versuche sind in speziellen Anleitungen ausführlich beschrieben. Es wird erwartet, dass der/die Studierende sich auf den Praktikumsversuch vorbereitet d.h. ihm/ihr die Aufgabenstellung vertraut ist und er/sie die zugrunde liegende Theorie beherrscht. Die Versuche werden unter fachlicher Aufsicht im Team selbstständig durchgeführt und in einer gemeinsamen Ausarbeitung dokumentiert und diskutiert.
Teilnahmevoraussetzungen
Inhaltlich: Regelungstechnik
Prüfungsformen
Praktikum: Unbenoteter Teilnahmenachweis
Voraussetzungen für die Vergabe von Kreditpunkten
Praktikum: Unbenoteter Teilnahmenachweis muss erbracht sein
Verwendbarkeit des Moduls (in anderen Studiengängen)
Stellenwert der Note für die Endnote
Literatur
Lunze, J.: Regelungstechnik 2
Unbehauen, H.: Regelungstechnik 1
Unbehauen, H.: Regelungstechnik 2
Dimensionierung elektr. Maschinen- PF
- 4 SWS
- 6 ECTS
- PF
- 4 SWS
- 6 ECTS
Nummer
325110
Sprache(n)
de
Dauer (Semester)
1
Kontaktzeit
60h
Selbststudium
120h
Lernergebnisse (learning outcomes)/Kompetenzen
Die Studierenden erlernen den elektromagnetischen Entwurf elektrischer Maschinen mit Hilfe analytischer Verfahren. Aufbauend auf den bekannten Grundlagen elektrischer Maschinen werden die Ersatzschaltbilder zur Beschreibung des quasistationären Betriebsverhaltens vertieft. An Beispielen erlenen die Studierenden dann die Dimensionierung der verschiedenen Komponenten des gesamten Antriebsstrangs.
Praktikum:
Synchron- und Asynchronmaschine werden praktisch mit meßtechnischen und analytischen Untersuchungen untersucht und deren Betriebsverhalten verstanden.
Kennenlernen von rechnergestützten Entwurfs- und Simulationsverfahren.
Inhalte
Drehfeldentstehung, Drehfeldwicklung, Oberwellen und Oberwellenreduktion.
Asynchronmaschine, Stromverdrängung, Oberfeldtheorie der Asynchronmaschine.
Permanent-erregte Synchronmaschine, Synchronreluktanzmaschine.
Praktikum:
Messung eines Asynchronmotors und Bestimmung der Parameter des Ersatzschaltbildes. Analytischer Entwurf des Asynchronmotors und Vergleich mit den gemessenen Werten.
Lehrformen
Praktikum:
Die in der Vorlesung vermittelte Theorie wird durch praktische Versuche vertieft und ergänzt. Die einzelnen Versuche sind in speziellen Anleitungen ausführlich beschrieben. Es wird erwartet, dass der/die Studierende sich auf den Praktikumsversuch vorbereitet d.h. ihm/ihr die Aufgabenstellung vertraut ist und er/sie die zugrunde liegende Theorie beherrscht. Die Versuche werden unter fachlicher Aufsicht im Team selbstständig durchgeführt und in einer gemeinsamen Ausarbeitung dokumentiert und diskutiert.
Teilnahmevoraussetzungen
Prüfungsformen
Praktikum: Unbenoteter Teilnahmenachweis
Voraussetzungen für die Vergabe von Kreditpunkten
Praktikum: Unbenoteter Teilnahmenachweis muss erbracht sein
Verwendbarkeit des Moduls (in anderen Studiengängen)
Stellenwert der Note für die Endnote
Literatur
Nürnberg: Die Asynchronmaschine, Springer, 1979
Müller, Vogt, Ponick: Berechnugn elektrischer Maschinen, Wiley, 2009
Leistungselektronische Anwendungen- PF
- 4 SWS
- 6 ECTS
- PF
- 4 SWS
- 6 ECTS
Nummer
325120
Sprache(n)
de
Dauer (Semester)
1
Kontaktzeit
60h
Selbststudium
120h
Lernergebnisse (learning outcomes)/Kompetenzen
Praktikum:
Die in der Vorlesung vermittelte Theorie wird durch praktische Versuche vertieft und ergänzt. Die einzelnen Versuche sind in speziellen Anleitungen ausführlich beschrieben. Es wird erwartet, dass der/die Studierende sich auf den Praktikumsversuch vorbereitet d.h. ihm/ihr die Aufgabenstellung vertraut ist und er/sie die zugrunde liegende Theorie beherrscht. Die Versuche werden unter fachlicher Aufsicht im Team selbstständig durchgeführt und in einer gemeinsamen Ausarbeitung dokumentiert und diskutiert.
Inhalte
- Aufbau, Funktion und Dimensionierung von Stromrichtern und Frequenzumrichtern,
- Kommutierungsvorgänge und Einschlüsse parasitärer Effekte auf das Betriebsverhalten
- thermische und elektrische Dimensionierung von Leistungshalbleitern,
- Regelverfahren,
- Rückwirkungen der Stromrichter und Frequenzumrichter.
Praxisnahe Anwendungen:
- Steuer- und Regelverfahren von Frequenzumrichtern
- Mehrstufige Wechselrichterschaltungen
- Moderne Treiberschaltungen
Praktikum (3 Versuche):
- Drehstrom-Brückenschaltung (B6C):
B6-Schaltung im Gleich- und Wechselrichterbetrieb mit Gleichstrommaschine; Messungen: Zündimpulse, Spannung, Strom, Wirk-, Schein- und Blindleistung, Steuer-und Belastungskennlinien.
- Gleichstromsteller:
Batteriegespeister Gleichstromsteller mit Gleichstrommaschine; Messungen: Spannung, Strom, Kommutierung, Steuerkennlinien.
- Frequenzumrichter:
Pulsbreitenmodulierter U-Umrichter mit Asynchronmaschine; Messungen: Spannung, Strom, Kennlinien, Leistungsfaktor, Wirkungsgrad, Oberschwingungen am Ein- und am Ausgang des Umrichters.
Lehrformen
Praktikum:
Die in der Vorlesung vermittelte Theorie wird durch praktische Versuche vertieft und ergänzt. Die einzelnen Versuche sind in speziellen Anleitungen ausführlich beschrieben. Es wird erwartet, dass der/die Studierende sich auf den Praktikumsversuch vorbereitet d.h. ihm/ihr die Aufgabenstellung vertraut ist und er/sie die zugrunde liegende Theorie beherrscht. Die Versuche werden unter fachlicher Aufsicht im Team selbstständig durchgeführt und in einer gemeinsamen Ausarbeitung dokumentiert und diskutiert.
Teilnahmevoraussetzungen
Prüfungsformen
Praktikum: Unbenoteter Teilnahmenachweis
Voraussetzungen für die Vergabe von Kreditpunkten
Verwendbarkeit des Moduls (in anderen Studiengängen)
Stellenwert der Note für die Endnote
Literatur
Michel, Manfred: Leistungselektronik
Specovius, Joachim: Grundkurs Leistungselektronik
Schröder, D. Elektrische Antriebe – Band 4: Leistungselektronische Schaltungen, Felderhoff, R. Leistungselektronik
Lutz, Josef: Halbleiter-Leistungsbauelemente
Brosch, P. F. Moderne Stromrichterantriebe
Versuchsanleitungen Fachpraktikum Leistungselektronische Anwendungen
Vorlesungsskript Leistungselektronische Anwendungen
SPS-Technik- PF
- 4 SWS
- 6 ECTS
- PF
- 4 SWS
- 6 ECTS
Nummer
325140
Sprache(n)
de
Dauer (Semester)
1
Kontaktzeit
60h
Selbststudium
120h
Lernergebnisse (learning outcomes)/Kompetenzen
Die Studierenden sollen fundierte Kenntnisse über folgende Aspekte der SPS-Technik erlangen:
- Strukturierung automatisierungstechnischer Projekte in einzelne Funktionsbausteine und Tasks
- Diverse Programmiersprachen nach der Norm IEC 61131-3
- Auswahl der zu verwendenden Programmiersprache passend zur konkreten Aufgabenstellung
- Objektorientierte Programmierung von Steuerungen
Praktikum:
Beherrschen der diversen Programmiersprachen nach der Norm IEC 61131-3 sowie selbständiger Umgang mit SPS-Entwicklungssystemen
Inhalte
- SPS-Sprachen nach IEC 61131-3
- gemeinsame Elemente: Datentypen, Funktionen, Bausteine
- die Sprachen Structured Text (ST), Function Block Diagram
(FBD), Ladder Diagram (LD), Instruction List (IL), Sequential Function Chart (SFC), Continuous Function Chart (CFC)
- objektorientierte Programmierung
- Prozess-Interfaces von SPS
- Anforderungen an Automatisierungssysteme
- Beispiele für Anwendungen
Praktikum:
Anhand von steuerungstechnischen Aufgabenstellungen soll eine Steuerung für einen simulierten Prozess in unterschiedlichen Programmiersprachen nach der Norm IEC 61131-3 erstellt werden.
Lehrformen
Praktikum:
Das Praktikum wird in jedem Versuch rechnergestützt durchgeführt. Hierfür steht die Entwicklungsumgebung CODESYS in Anlehnung an die Vorlesung zur Verfügung. Die einzelnen Versuche sind in speziellen Anleitungen ausführlich beschrieben. Es wird erwartet, dass der/die Studierende sich auf den Praktikumsversuch vorbereitet d.h. ihm/ihr die Aufgabenstellung vertraut ist und er/sie die zugrunde liegende Theorie beherrscht. Die Versuche werden unter fachlicher Aufsicht im Team selbstständig durchgeführt und in einer gemeinsamen Ausarbeitung dokumentiert und diskutiert.
Teilnahmevoraussetzungen
Prüfungsformen
Praktikum: Unbenoteter Teilnahmenachweis
Voraussetzungen für die Vergabe von Kreditpunkten
Praktikum: Unbenoteter Teilnahmenachweis muss erbracht sein
Verwendbarkeit des Moduls (in anderen Studiengängen)
Stellenwert der Note für die Endnote
Literatur
Pickhardt, R.: Grundlagen und Anwendung der Steuerungstechnik, Vieweg, 2000
Seitz, M.: Speicherprogrammierbare Steuerungen für die Fabrik- und Prozessautomation, Hanser, 2015
DIN EN 61131-3 (bzw. IEC 61131-3): Speicherprogrammierbare Steuerungen Teil 3: Programmiersprachen, 2014
Automatisierung ereignisdiskreter Systeme- WP
- 3 SWS
- 3 ECTS
- WP
- 3 SWS
- 3 ECTS
Nummer
348257
Sprache(n)
de
Dauer (Semester)
1
Kontaktzeit
45h
Selbststudium
45h
Lernergebnisse (learning outcomes)/Kompetenzen
Inhalte
- Automaten
- Petrinetze
Verhalten ereignisdiskreter Systeme
- Verhalten von Automaten
- Verhalten der Petrinetze
Steuerungsentwurf ereignisdiskreter Systeme
Lehrformen
Teilnahmevoraussetzungen
Inhaltlich: Regelungstechnik, SPS-Technik
Prüfungsformen
Voraussetzungen für die Vergabe von Kreditpunkten
Verwendbarkeit des Moduls (in anderen Studiengängen)
Stellenwert der Note für die Endnote
Literatur
Datenanalyse mit Python- WP
- 3 SWS
- 3 ECTS
- WP
- 3 SWS
- 3 ECTS
Nummer
348350
Sprache(n)
de
Dauer (Semester)
1
Kontaktzeit
36h
Selbststudium
54h
Lernergebnisse (learning outcomes)/Kompetenzen
anzuwenden. Sie sind dazu befähigt, sich in die Verwendung weiterer numerischer Verfahren und Python-Bibliotheken
einzuarbeiten.
Inhalte
- Einlesen von Datensätzen in verschiedenen Formaten
- Visualisierung von zwei und drei dimensionalen Datensätzen
- Numerische und statistische Verarbeitung von Daten
- Bildmanipulation und -analyse
- Fitting- und Optimierungsverfahren
Die vorgestellten Methoden umfassen generelle Ansätze aus der Datenverarbeitung und -visualisierung und der
Optimierung. Der Schwerpunkt der Lehrveranstaltung liegt auf der praktischen Verwendung der Verfahren anhand von generischen und fachspezifischen Beispielen.
Die verwendeten fachspezifischen Anwendungsbeispiele kommen aus dem Bereich der Umwelttechnik und aus dem Energiemarkt und werden laufend angepasst.
Lehrformen
Teilnahmevoraussetzungen
Inhaltlich: Mathematik 1 und Mathematik 2, Grundlagen der Programmierung
Prüfungsformen
Voraussetzungen für die Vergabe von Kreditpunkten
Verwendbarkeit des Moduls (in anderen Studiengängen)
Stellenwert der Note für die Endnote
Literatur
Elektronische Steuergeräte- WP
- 3 SWS
- 3 ECTS
- WP
- 3 SWS
- 3 ECTS
Nummer
348217
Sprache(n)
de
Dauer (Semester)
1
Lernergebnisse (learning outcomes)/Kompetenzen
Inhalte
- Steuergeräte-HW: Leiterplatte und elektronische Bauelemente (Elektronik)
- Steuergeräte-SW: Algorithmen der Steuerungs- und Regelungstechnik (Informatik)
- Sensoren und Aktoren, z. B. elektromechanische Komponenten (Mechanik)
Anhand von praktischen Beispielen aus dem Bereich der Steuerung und Regelung von Gleichstrommotoren steht die Entwicklung von Elektronik und insbesondere von Software-Algorithmen der Steuergeräte im Mittelpunkt. Dabei kommen modellbasierte Methoden zur Entwicklung und zum Testen mit den professionellen Software-Tools MATLAB, Simulink und Simscape (MathWorks) zum Einsatz. Dazu wird eine praktische Einführung in diese Software-Tools gegeben:
- Möglichkeiten zur Modellierung und Simulation von dynamischen Systemen
- Beispiele: RC-Glied, RL-Glied, Gleichstrommotor (Funktionsweise und Ansteuerung)
Ebenfalls erfolgt eine praxisnahe Einführung in die modellbasierte Software-Entwicklung für eingebettete Systeme:
- Möglichkeiten zur Modellierung und Simulation von Software-Algorithmen
- Möglichkeiten zur Code-Generierung für Mikrocontroller-Entwicklungsboards
- Praktische Beispiele zur Steuerung und Regelung von Gleichstrommotoren
Lehrformen
Teilnahmevoraussetzungen
Prüfungsformen
Voraussetzungen für die Vergabe von Kreditpunkten
Verwendbarkeit des Moduls (in anderen Studiengängen)
Stellenwert der Note für die Endnote
Literatur
Angermann, A.; Beuschel, M.; Rau, M.; Wohlfarth, U.: MATLAB – Simulink – Stateflow, De Gruyter, 2021
Pietruszka, W. D.; Glöckler, M.: MATLAB und Simulink in der Ingenieurpraxis, Springer, 2021
Schäuffele, J.; Zurawka, T.: Automotive Software Engineering, Springer, 2016
Abel, D.; Bollig, A.: Rapid Control Prototyping, Springer, 2006
Online-Dokumentationen und Tool-Hilfen zu diversen Software-Tools der Firma MathWorks (z. B. MATLAB, Simulink, Simscape)
Embedded Systems- WP
- 3 SWS
- 3 ECTS
- WP
- 3 SWS
- 3 ECTS
Nummer
348334
Sprache(n)
de
Dauer (Semester)
1
Kontaktzeit
45h
Selbststudium
45h
Lernergebnisse (learning outcomes)/Kompetenzen
Inhalte
- Architektur von praxisrelevanten Prozesseinheiten (z. B. Systems-on-Chip, Field-Programmable-Gate-Arrays)
- Digitale/analoge Baugruppen der Sensorik und Aktorik (z. B. Time-of-Flight, Global Positioning System)
- Bussysteme/Schnittstellen und deren Anwendung zur Verknüpfung digitaler Baugruppen
- Grundkenntnisse des Hardware Software Codesigns
- Entwurf und Programmierung von Sensor und Aktorsystemen zur Lösung eines technischen Problems
Lehrformen
Teilnahmevoraussetzungen
Inhaltlich: Mikrocontrollertechnik, Grundlagen der Programmierung
Prüfungsformen
Voraussetzungen für die Vergabe von Kreditpunkten
Verwendbarkeit des Moduls (in anderen Studiengängen)
Stellenwert der Note für die Endnote
Literatur
Lee, Seshia: "Embedded Systems - A Cyber-Physical Systems Approach", MIT Press, 2017
Marwedel: "Eingebettete Systeme - Grundlagen eingebetteter Systeme in Cyber-Physikalischen Systemen", Springer, 2021
Energiewelt Heute und in der Zukunft- WP
- 3 SWS
- 3 ECTS
- WP
- 3 SWS
- 3 ECTS
Nummer
348163
Sprache(n)
de
Dauer (Semester)
1
Kontaktzeit
36h
Selbststudium
54h
Lernergebnisse (learning outcomes)/Kompetenzen
Inhalte
Lehrformen
Das Vorlesungsskript wird zum Download im Netz zur Verfügung gestellt.
Teilnahmevoraussetzungen
Prüfungsformen
Voraussetzungen für die Vergabe von Kreditpunkten
Verwendbarkeit des Moduls (in anderen Studiengängen)
Stellenwert der Note für die Endnote
Literatur
Gebäudesimulation- WP
- 3 SWS
- 3 ECTS
- WP
- 3 SWS
- 3 ECTS
Nummer
348337
Sprache(n)
de
Dauer (Semester)
1
Kontaktzeit
45h
Selbststudium
45h
Lernergebnisse (learning outcomes)/Kompetenzen
- Kenntnis der Vorgehensweise bei Simulationsstudien
- Überblick über die verschiedenen Typen von Simulationsmethoden und deren Differenzierung
- Bewerten der Einsetzbarkeit von Simulationsmethoden für die jeweilige Aufgabenstellung
Inhalte
Lehrformen
Teilnahmevoraussetzungen
Prüfungsformen
Voraussetzungen für die Vergabe von Kreditpunkten
Verwendbarkeit des Moduls (in anderen Studiengängen)
Stellenwert der Note für die Endnote
Literatur
- Gieseler, U.D.J., Bier, W., Heidt, F.D.: Combined thermal measurement and simulation for the detailed analysis of four occupied low-energy buildings. Proceedings of the 8th Intern. IBPSA Conf., Building Simulation, Eindhoven (2003) vol. 1, pp. 391-398
- Gieseler, U.D.J; Heidt, F.D.: Bewertung der Energieeffizienz verschiedener Maßnahmen für Gebäude mit sehr geringem Energiebedarf, Forschungsbericht, Fachgebiet Bauphysik und Solarenergie, Universität Siegen, Fraunhofer IRB-Verlag, Stuttgart (2005)
- Deutsches Institut für Normung (DIN): DIN V 18599: Energetische Bewertung von Gebäuden, Beuth Verlag, Berlin (2018)
- Baehr, H.D., Stephan, K.: Wärme- und Stoffübertragung, Springer Verlag, Berlin (2006)
- Klein, S.A., Duffie, J.A. and Beckman, W.A.: TRNSYS - A Transient Simulation Program, ASHRAE Trans. 82 (1976) pp. 623 ff
Grundlagen der Finite Elemente Methode- WP
- 3 SWS
- 3 ECTS
- WP
- 3 SWS
- 3 ECTS
Nummer
34611
Sprache(n)
de
Dauer (Semester)
1
Infrastruktursysteme der Energieversorgung- WP
- 3 SWS
- 3 ECTS
- WP
- 3 SWS
- 3 ECTS
Nummer
348157
Sprache(n)
de
Dauer (Semester)
1
Kontaktzeit
45h
Selbststudium
45h
Lernergebnisse (learning outcomes)/Kompetenzen
Die Hörer sollen in die Lage versetzt werde die Tätigkeitsfelder der Anlagenwirtschaft wie z.B. Planung und Neubau von Anlagen, Instandhaltung, Umbau, Erweiterung und Modifikation und die Stilllegung von Anlagen aus unterschiedlichen Perspektiven bewerten zu können. Insbesondere geht es darum, dass der Hörer dies im Hinblick auf die Bewertungen einer Planung im technischen Umfeld mit dem Blick auf das Ganze und im Sinne einer Chancen und Risiken orientierten Planung kennen lernt.
Inhalte
Asset Management – Definition, Aufgaben und Ziele, Lebenszyklus-Management, Risikomanagement, Instandhaltungs-Management, Umfeldanalysen, Strategische Maßnahmenentscheidung, Maßnahmenplan / Mittelfristplanung, Projektvorbereitung, Projektauswahl und Priorisierung, Verbesserungsprozess, Asset Management Gestern, Heute und Morgen, Zusammenfassung / Prüfungsvorbereitung
Alle Inhalte werden auf Grundlage von Beispielen aus der Praxis dargestellt und erläutert.
Lehrformen
Die Vorlesungsunterlagen werden zum Download im Netz zur Verfügung gestellt.
Teilnahmevoraussetzungen
Prüfungsformen
Voraussetzungen für die Vergabe von Kreditpunkten
Verwendbarkeit des Moduls (in anderen Studiengängen)
Stellenwert der Note für die Endnote
Literatur
Beiträge zu den Schwerpunkten in Form von Artikeln und Präsentationen und Veröffentlichungen aus der üblichen Literatur der Energiewirtschaft (z.B. EW, ETG)
Innovative Isoliersysteme- WP
- 3 SWS
- 3 ECTS
- WP
- 3 SWS
- 3 ECTS
Nummer
348160
Sprache(n)
de
Dauer (Semester)
1
Kontaktzeit
45h
Selbststudium
45h
Lernergebnisse (learning outcomes)/Kompetenzen
Sie kennen grundlegende Beanspruchungsarten von Isolieranordnungen und können dieses charakterisieren. Die Studierenden kennen die charakteristischen Versagensmechanismen von Hochspannungsisoliersystemen und können daraus Belastungsgrenzen aufzeigen. Basierden darauf können die Studierenden innovative Lösungsansätze vorschlagen, um die charakteristischen Eigenschaften von Isolierwerkstoffen zu optimieren.
Die Studierenden können anwendungsfallbezogene Prüfungen vorschlagen, um Isolierwerkstoffe hinsichtlich ihrer charakteristischen Eigenschaften zu qualifizieren und Isolieranordnungen bei Abnahmen und während des Betriebes zu prüfen und zu überwachen.
Inhalte
Isoliestoffe - Einstoffdielektrika
Isolierstoffsystem - Mehrstoffdielektrika
Bewertung von Isolierstoffen und Isolierstoffsystemen
Grenzflächen und Feldsteuerungen
Herstellung von Isoliesystemen und QS-Maßnahmen
Betriebsmittelbeispiel: Isoliersysteme rotierender elektrischer Maschinen
Betriebsmittelbeipsiel: Nanopartikulär gefülltes Epoxydharzsystem
Innovative selbstheiledende Isoliermaterialien
Betriebsmittelbeispiel: Kabelisolierung
Betriebsmittelbeispiel: HGÜ-Stützer bei Mischbeanspruchung
Überwachung und Diagnose von Isoliersystemen
Lehrformen
Übung
Seminarvortrag (optional)
1-2 Exkursionen (optinal & nach Abstimmung)
Teilnahmevoraussetzungen
Prüfungsformen
Ein Teil Prüfungsleistung kann nach Absprache vorab im Rahmen von vorlesungsbezogenen Seminarvorträgen erworben werden.
Voraussetzungen für die Vergabe von Kreditpunkten
Verwendbarkeit des Moduls (in anderen Studiengängen)
Stellenwert der Note für die Endnote
Literatur
A. Küchler: Hochspannungstechnik
Kraftwerksanlagen- WP
- 3 SWS
- 3 ECTS
- WP
- 3 SWS
- 3 ECTS
Nummer
348155
Sprache(n)
de
Dauer (Semester)
1
Kontaktzeit
45h
Selbststudium
45h
Lernergebnisse (learning outcomes)/Kompetenzen
Inhalte
Energieträger - Vorkommen, Eigenschaften und Nutzung in D, EU, Welt;
Elektrischer Strom - Produkt, Markt und Preise;
Struktur der Stromversorgung - Netze und Netznutzung;
Kraftwerke - Energiewandlung, Technologien, Kosten und Wirtschaftlichkeit Entwicklung - Kohle, Kernkraft, Gas, GuD, KWK, Industrie-Kraftwerke;
Förderung und Perspektiven Erneuerbare Energien - Wind, Wasser, Biomasse, Sonne, Meer;
Speicher - Wasser, Batterien, Wasserstoff, Gas, "Norwegen", Power-to-X,
Betrieb und Instandhaltung, Digitalisierung in der Kraftwerkstechnik
Versorgungssicherheit / „Energiewende“ - Kraftwerkseinsatz, Kostenstrukturen, Angebot und Nachfrage
Stromerzeugungsprojekte / Kraftwerksbau - von der Idee bis zur Inbetriebnahme - Ermittlung und Bewertung der Wirtschaftlichkeit
Lehrformen
Das Vorlesungsskript wird zum Download im Netz zur Verfügung gestellt.
Teilnahmevoraussetzungen
Prüfungsformen
Voraussetzungen für die Vergabe von Kreditpunkten
Verwendbarkeit des Moduls (in anderen Studiengängen)
Stellenwert der Note für die Endnote
Literatur
VDI: Kraftwerkstechnik: zur Nutzung fossiler, nuklearer und regenerativer Energiequellen
Funke: Skript zur Vorlesung Kraftwerksanlagen
Light Technology- WP
- 3 SWS
- 3 ECTS
- WP
- 3 SWS
- 3 ECTS
Nummer
34619
Sprache(n)
de
Dauer (Semester)
1
Kontaktzeit
45h
Selbststudium
45h
Lernergebnisse (learning outcomes)/Kompetenzen
- Kenntnis der Messmethoden der Grundgrößen.
- Verständnis der Funktionsweise verschiedener Lichtquellen.
- Kenntnis der Anforderungen bei der Innenraumbeleuchtung.
- Verständnis des Zusammenhangs zwischen Lichterzeugung und Energieverbrauch.
- Anwendung der radio- und photometrischen Größen zur Bewertung von Lichtquellen
bezüglich deren Einsatzes innerhalb und außerhalb von Gebäuden.
- Fremdsprachenkompetenz (Englisch)
Inhalte
Lehrformen
Im Rahmen der Übungen sollen die Studierenden Aufgaben zur Anwendung der Grundgrößen der Lichttechnik aus den Bereichen der Messtechnik, Lichterzeugung sowie Beleuchtungstechnik möglichst selbstständig lösen und diese in einer gemeinsamen Besprechung präsentieren.
Vorlesungen und Übungen werden auf Englisch durchgeführt.
Teilnahmevoraussetzungen
Inhaltlich: Mathematik (insbesondere Differential- und Integralrechnung)
Prüfungsformen
Voraussetzungen für die Vergabe von Kreditpunkten
Verwendbarkeit des Moduls (in anderen Studiengängen)
Stellenwert der Note für die Endnote
Literatur
Lighting Press International (LPI), PPVMEDIEN, periodical (English/German)
Hentschel, H.-J.: Licht und Beleuchtung, Hüthing Verlag, Heidelberg (2002)
Gall, D.: Grundlagen der Lichttechnik, Pflaum Verlag München (2007)
Schubert, E.F.: Light Emitting Diodes, E-Book, Cambridge University Press (2006)
Jacobs, A.: SynthLight Handbook, Low Energy Architecture Research Unit, LEARN,
London Metropolitan University (2004),
https://www.new-learn.info/packages/synthlight/handbook/index.html
Modellbasierte Methoden der Fehlerdiagnose- WP
- 3 SWS
- 3 ECTS
- WP
- 3 SWS
- 3 ECTS
Nummer
34612
Sprache(n)
de
Dauer (Semester)
1
Kontaktzeit
45h
Selbststudium
45h
Lernergebnisse (learning outcomes)/Kompetenzen
Inhalte
- Definition and classification of fault diagnosis techniques
- Model-based fault detection and diagnosis
Description and analysis of technical systems
- Modeling
- Fault detectability, isolability and identifiability
Parity equation and parity space approach Observer-based fault diagnosis
- Observer design
- Observer bank
Fault diagnosis methods considering unknown inputs
Lehrformen
Teilnahmevoraussetzungen
Inhaltlich: Regelungstechnik
Prüfungsformen
Voraussetzungen für die Vergabe von Kreditpunkten
Verwendbarkeit des Moduls (in anderen Studiengängen)
Stellenwert der Note für die Endnote
Literatur
J. Chen, R.J. Patton: Robust Model-Based Fault Diagnosis for Dynamic Systems, Springer, 1999
Nachhaltigkeit- WP
- 3 SWS
- 3 ECTS
- WP
- 3 SWS
- 3 ECTS
Nummer
348164
Sprache(n)
de
Dauer (Semester)
1
Kontaktzeit
36h
Selbststudium
54h
Lernergebnisse (learning outcomes)/Kompetenzen
Im Rahmen der seminaristischen Veranstaltung stärken die Studierenden Schlüsselkompetenzen wie strukturiertes Dokumentieren & Präsentieren der Arbeitsergebnisse, sowie deren Diskussion in der Gruppe.
Inhalte
- Ökologische Nachhaltigkeit, Energiemanagement, Umweltmanagement, nachhaltige Mobilität
- Ökonmische Nachhaltigkeit: Nachhaltigkeit im bewtriebswirtschaftlichen handeln
- Soziale Nachhaltig und Ethik der Nachhaltigkeit
- Ergänzungen zur Erstellung von Essays(Berichten und Präsentationen
Lehrformen
Teilnahmevoraussetzungen
Prüfungsformen
Voraussetzungen für die Vergabe von Kreditpunkten
Verwendbarkeit des Moduls (in anderen Studiengängen)
Stellenwert der Note für die Endnote
Literatur
Netzstrategien und innovative Netzbetriebsmittel- WP
- 3 SWS
- 3 ECTS
- WP
- 3 SWS
- 3 ECTS
Nummer
348159
Sprache(n)
de
Dauer (Semester)
1
Kontaktzeit
45h
Selbststudium
45h
Lernergebnisse (learning outcomes)/Kompetenzen
Inhalte
Netzplanung / Neuartige Planungsansätze und Betriebskonzepte / Umsetzung der Digitalisierung in den Netzen
Intelligente Zähl- und Messsysteme, Einsatz von Informations- und Kommunikationstechnik im Netzbereich, Smarte Haushaltstechnik (Smart home)
Spannungsregler (rONT, Weitbereichsregelung, elektronische Regler)
Intelligente Ortsnetzstationen, Ladesäulen für E-Fahrzeuge, steuerbare Netzschalter
Speichersysteme (Hausspeicher, Netzspeicher, Power to gas, …)
Supraleiter, Wetterbedingte Freileitungsauslastung, Hochtemperaturleiterseil
Intelligente Energienetze (Hoch-, Mittel- und Niederspannung)
Netzstrategien
Zukünftige Rolle der Netzbetreiber
Lehrformen
Das Vorlesungsskript wird zum Download im Netz zur Verfügung gestellt. Darüber hinaus gibt es Filmmaterial zur Vertiefung der jeweiligen Inhalte sowie diverse Fachartikel.
Teilnahmevoraussetzungen
Prüfungsformen
Voraussetzungen für die Vergabe von Kreditpunkten
Verwendbarkeit des Moduls (in anderen Studiengängen)
Stellenwert der Note für die Endnote
Literatur
Mathias Uslar, Michael Specht, Christian Dänekas, Jörn Trefke, Sebastian Rohjans, José M. González, Christine Rosinger, Robert Bleiker: Standardization in Smart Grids: Introduction to IT-Related Methodologies, Architectures and Standards
Sterner, Michael, Stadler, Ingo: Energiespeicher - Bedarf, Technologien, Integration
Wolfgang Schellong: Analyse und Optimierung von Energieverbundsystemen
Stefan Willing: Skript zur Vorlesung Netzstrategien und Innovative Betriebsmittel
Diverse Fachartikel
Numerische Mathematik- WP
- 3 SWS
- 3 ECTS
- WP
- 3 SWS
- 3 ECTS
Nummer
34622
Sprache(n)
de
Dauer (Semester)
1
Kontaktzeit
45h
Selbststudium
45h
Lernergebnisse (learning outcomes)/Kompetenzen
- Algorithmen zum numerischen lösen klassischer mathematischer Probleme (Lösen von Gleichungen, Differential-&Integralrechnung, Differenitalgleichungen) zu entwerfen
- numerische Interpolationsverfahren anzuwenden
- die Performance eines numerischen Algorithmus bezüglich seiner Laufzeit einzuschätzen
- die Konvergenz eines numerischen Algorithmus zu analysieren
- Vor- und Nachteile von Machine-Learning Verfahren darzustellen
- Anwendungsgebiete von Monte-Carlo-Verfahren zu erkennen.
Inhalte
- Numerisches lösen von Gleichungen mit einer Variablen
- Interpolation
- Numerische Differential & Integralrechnung
- Numerisches lösen von Differentialgleichungen
- Numerisches lösen von Gleichungssystemen
- Approximationstheorie
- Zufallszahlen & Monte Carlo Simulationen
- Künstliche Intelligenz & Machine Learning
Lehrformen
An Rechen- und Programmieraufgaben werden die numerischen Verfahren praktisch eingesetzt und die Studierenden in die Lage versetzt, selbstständig numerische Lösungen für praxisnahe Anwendungen zu entwerfen.
In den gemeinsamen Übungsstunden werden die Lösungen vorgestellt und diskutiert.
Teilnahmevoraussetzungen
Prüfungsformen
Voraussetzungen für die Vergabe von Kreditpunkten
Verwendbarkeit des Moduls (in anderen Studiengängen)
Stellenwert der Note für die Endnote
Literatur
-Zurmühl: Praktische Mathematik, Springer
-Huckle, Schneider: Numerische Methoden, Springer
-Gerlach: Computerphysik, Springer (Einführungskapitel)
Schaltnetzteile- WP
- 3 SWS
- 3 ECTS
- WP
- 3 SWS
- 3 ECTS
Nummer
348165
Sprache(n)
de
Dauer (Semester)
1
Kontaktzeit
36 h
Selbststudium
54 h
Lernergebnisse (learning outcomes)/Kompetenzen
Inhalte
-Auslegungsregeln des LC-Filters
-Dimensionierung der Schaltstufe
-Reglerentwurf und Stabilisierung
-Extraktion der Reglereigenschaften durch Simulation
-lückender und nichtlückender Betrieb
-Stromführung
-Hystereseregelung
-Multiphasen und Multilevel Wandler
-Nullstrom und Nullspannungschaltung
-Resonanzbetrieb
Lehrformen
Teilnahmevoraussetzungen
Prüfungsformen
Voraussetzungen für die Vergabe von Kreditpunkten
Verwendbarkeit des Moduls (in anderen Studiengängen)
Stellenwert der Note für die Endnote
Literatur
Choi, Pulsewidth Modulated DC-to-DC Power Conversion: Circuits, Dynamics, and Control Designs, Wiley IEEE-Press, 2013
Special electrical machines and drives- WP
- 3 SWS
- 3 ECTS
- WP
- 3 SWS
- 3 ECTS
Nummer
348216
Sprache(n)
de
Dauer (Semester)
1
Kontaktzeit
45h
Selbststudium
45h
Lernergebnisse (learning outcomes)/Kompetenzen
Die Studierenden lernen verschiedene Anforderungen kennen, bei denen Standardmaschinen nicht mehr eingesetzt werden können. Sie können zum Einen begründen, wieso dann spezielle Maschinen erforderlich sind und zum Anderen auch, warum die eingesetzen Sondermaschinen genau den Anforderungen gerecht werden. Für jede Maschine werden ihre Konstruktion, Anwendungsgebiete und das Betriebsverhalten erkläutert und bewertet.
Inhalte
Lehrformen
Teilnahmevoraussetzungen
Prüfungsformen
Voraussetzungen für die Vergabe von Kreditpunkten
Verwendbarkeit des Moduls (in anderen Studiengängen)
Stellenwert der Note für die Endnote
Literatur
Technisches Englisch- WP
- 3 SWS
- 3 ECTS
- WP
- 3 SWS
- 3 ECTS
Nummer
32601
Sprache(n)
de
Dauer (Semester)
1
Kontaktzeit
45h
Selbststudium
45h
Lernergebnisse (learning outcomes)/Kompetenzen
Fähigkeit zum Lesen, Verstehen und Kommunizieren von Bedienungs- und Programmieranleitungen, Technischen Merkblättern, Datenblättern.
Die Studierenden können eine Präsentation in englischer Sprache über technische Themen erstellen und durchführenDie Studierenden können eine Präsentation in englischer Sprache über technische Themen erstellen und durchführen
Inhalte
Besonderheiten technischer Literatur (Fachzeitschriften, Fachblätter) / Specific features of technical literature (technical periodicals, technical sheets)
Fachübersetzungen deutsch/englisch und englisch/deutsch / Technical translations German / English and English / German
Ausarbeiten einer englischsprachigen Präsentation / Working out an English presentation
Lehrformen
Teilnahmevoraussetzungen
Prüfungsformen
Voraussetzungen für die Vergabe von Kreditpunkten
Verwendbarkeit des Moduls (in anderen Studiengängen)
Stellenwert der Note für die Endnote
Literatur
6. Studiensemester
Betriebliche Praxis- PF
- 0 SWS
- 10 ECTS
- PF
- 0 SWS
- 10 ECTS
Nummer
329820
Sprache(n)
de
Dauer (Semester)
1
Kontaktzeit
0h
Selbststudium
300h
Lernergebnisse (learning outcomes)/Kompetenzen
oder anderen Einrichtungen der Berufspraxis heranführen.
Sie soll insbesondere dazu dienen, die im bisherigen Studium erworbenen Kenntnisse und Fähigkeiten durch Bearbeitung einer konkreten Aufgabe anzuwenden und zu reflektieren.
Inhalte
Die Beschreibung, Erläuterung und Präsentation der bearbeiteten Lösung sind Bestandteil des Moduls und dienen schon als Vorbereitung auf die Bachelor-Thesis.
Die Aufgabenstellung stammt aus einem der im Studiengang vorhandenen Fachgebieten.
Bei der Bearbeitung des Projekts werden die Studierenden durch eine Mentorin oder einen Mentor der Hochschule begleitet.
Lehrformen
Teilnahmevoraussetzungen
Prüfungsformen
Voraussetzungen für die Vergabe von Kreditpunkten
Verwendbarkeit des Moduls (in anderen Studiengängen)
Stellenwert der Note für die Endnote
Literatur
Thesis- PF
- 0 SWS
- 14 ECTS
- PF
- 0 SWS
- 14 ECTS
Nummer
103
Sprache(n)
de
Dauer (Semester)
1
Kontaktzeit
0h
Selbststudium
420h
Lernergebnisse (learning outcomes)/Kompetenzen
Im Kolloquium sind die Arbeitsergebnisse in Form eines Fachvortrags zu präsentieren. Dabei sollen die Studierenden die wesentlichen Kernpunkte, Methoden und Problemfelder der Thesis in komprimiert aufbereiteter Form darstellen. Die Studierenden beherrschen Techniken zur Darstellung, Erläuterung und Verteidigung der erzielten Ergebnisse zu dem in der Thesis bearbeiteten Arbeitsgebiet. Sie können sich einer Fachdiskussion zu den Themen der Thesis stellen, sie in den jeweiligen industriellen Gesamtrahmen einordnen und Fragen der wissenschaftlichen Lösungswege sowie deren Randbedingungen beantworten.
Inhalte
Eine externe Bearbeitung in einem Industrieunternehmen ist möglich und erwünscht. Hierbei sind die Bedingungen der Prüfungsordnung zu beachten.
Die Bachelor-Thesis wird in der Regel im sechsten bzw. siebten Fachsemester abgeleistet und umfasst einen zusammenhängenden Zeitraum von 12 Wochen.
Die vorgegebenen Fristen sind der Prüfungsordnung zu entnehmen.
Die Bachelor-Thesis wird durch einen Fachvortrag im Rahmen eines Kolloquiums abgeschlossen. Das thematisch abgegrenzte Aufgabengebiet der Thesis wird dabei mit ingenieurwissenschaftlichen Methoden aufgearbeitet und präsentiert.
Argumentationsketten für die gewählte Vorgehensweise und die inhaltliche Vorgehensweise bei der Bearbeitung werden gebildet und diskutiert.